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Abstract

A tubing of a rooted tree is a broad term for a way to split up the tree into induced
connected subtrees. They are useful for computing series expansion coefficients. This
thesis discusses two different definitions of tubings, one which helps us understand Dyson-
Schwinger equations, and the other which helps us understand the Magnus expansion.
Chord diagrams are combinatorial objects that relate points on a circle. We can explicitly
map rooted connected chord diagrams to tubings of rooted trees by a bijection, and we
explore further combinatorial properties arising from this map. Furthermore, this thesis
describes how re-rooting a tubed tree will change the chord diagram. We present an
algorithm for finding the new chord diagram by switching some chords around. Finally,
a different notion of tubings of rooted trees is introduced, which was originally developed
by Mencattini and Quesney [27]. They defined two sub-types of tubings: vertical and
horizontal which are used to find coefficients in the Magnus expansion. These two types
of tubings have an interesting relationship when the forests are viewed as plane posets.
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Chapter 1

Introduction

This thesis primarily deals with tubings of plane rooted trees and chord diagrams, and how
we can use them to calculate coefficients in quantum field theory.

Rooted trees are combinatorial structures that come up frequently in various disciplines;
they are particularly useful in combinatorics and computer science, (see Chapters I.2 and
I.5 of [12] and references therein.) Rooted trees efficiently display hierarchical structures of
sets, and consequently are useful in computer science and data organization. Additionally
the hierarchical structure makes it easy to systematically count the number of distinct
trees [34], which is highly advantageous in enumeration. Rooted trees are closely related
to Catalan numbers; for example, the number of different binary trees with n vertices is
given by the nth Catalan number. Rooted trees may be plane or nonplane, and the plane
structure introduces new enumerative properties and applications. In the perspective of
this thesis, rooted trees are motivated by quantum field theory, where they represent the
hierarchical structure of insertions of divergent Feynman diagrams into other divergent
Feynman diagrams. Tubings are a way to decompose a tree into connected subtrees, which
yield interesting combinatorial and geometric structures. Binary tubings, sometimes called
pipings [14], are a type of tubing that have been used to solve series expansions of Dyson
Schwinger equations [2, 33]. Described in this thesis is a very nice map between binary
tubings of rooted trees and connected chord diagrams. Magnus tubings are another type of
tubing which depend on the partial orderings of vertices in the tree [27]. There are many
other types of tubings with interesting properties, such as those used to define the graph
associahedron [14, 5].

Chord diagrams are combinatorial structures made of pairings of points on a circle, and
have applications throughout mathematics and other sciences, such as biology. Combina-
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torially, they allow us to study properties of permutations and partitioning [28, 30, 31],
and they can be used to model problems in areas such as graph theory [15, 16, 17] and
bioinformatics [22]. A particularly interesting application of chord diagrams is studying
RNA secondary structure, which involves base-pairings within an RNA molecule [20, 18].
Frequently chord diagrams are drawn on a circle where chords are edges connecting points
on the circle, however, rooted chord diagrams take one end of a chord to be the root, and
are thus displayed linearly. Chord diagrams may be connected or disconnected, and in
the rooted sense, may be decomposable. This thesis deals with rooted connected chord
diagrams. For Dyson-Schwinger equations, chord diagrams are useful in series expansions
[26, 7, 6, 19, 8].

The work of this thesis is motivated primarily by the combinatorics of quantum field
theory. Quantum field theory is an area of theoretical physics that combines quantum me-
chanics and relativity to describe the behaviour of subatomic particles. Dyson-Schwinger
equations are the quantum analogs of the equations of motion. They are differential equa-
tions used in quantum field theory containing information about the behavior and inter-
actions of quantum fields. In a perturbative approach to quantum field theory, we look
for series expansion solutions to Dyson-Schwinger equations. These series expansions are
usually indexed by Feynman diagrams [11], but this is not fully combinatorial because
each Feynman diagram contributes a complicated integral to the sum. Yeats developed
a program to give series expansions of Dyson-Schwinger equations using chord diagrams
[26, 19, 7, 6], where each diagram’s contribution is combinatorial. This was improved upon
in [2] to a tubing expansion; Chapter 3 gives the explicit connection between tubings and
chord diagram expansions of Dyson-Schwinger equations.

Another important expansion in quantum field theory is the Magnus expansion, which is
discussed in more detail in Chapter 5. Other ways combinatorics comes up in quantum field
theory include renormalization Hopf algebras and the graph theory of Feynman periods
(see [37] and the references therein). Combinatorics also relates to vector models and other
topics (see [36] and references therein).

The thesis is roughly divided into two parts, binary tubings and Magnus tubings, and
the outline is as follows. First, some of the key terms and concepts needed for this research,
such as rooted trees, chord diagrams, and posets, will be introduced in Chapter 2. Chap-
ter 3 and Chapter 4 relate to a bijection between tubings of rooted trees and connected
chord diagrams Theorem 3.11. Chapter 4 makes use of the map from Chapter 3 but focuses
on how re-rooting trees (Definition 4.1) affects chord diagrams through the map defined.
Finally, Chapter 5 introduces a different type of tubings of plane rooted forests, which we
call Magnus tubings (Definition 5.4), based on the work of Mencattini and Quesney [27].
Two types of Magnus tubings are used to compute coefficients in the Magnus Expansion
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(Theorem 5.9 and Theorem 5.13.) Building off of their work, we were use the perspec-
tive of plane posets to study a duality between these two types (Definition 5.15.) Finally,
Chapter 6 will conclude the research and discuss open problems and future work.

The bijection of Chapter 3 and Chapter 4 opens up new questions about how manipu-
lating a tubed rooted tree affects its chord diagram or vice-versa. Re-rooting trees is one
way to study this. Tree re-rooting is an operation where, given a rooted tree, we choose a
new root, changing nothing else about the graph. While it’s certainly possible to re-root a
tree and find the chord diagram from the bijection, we are interested in how we can find
the chord diagram without knowing what the new tree looks like. Solely by knowing what
the tree and chord diagram look like before re-rooting, we have found an algorithm for
finding the new chord diagram, and the new tree is not necessary in this algorithm at all.
It turns out that we need to put markers (in this thesis we colour them) on the vertices
of the tree so that we know what to do with each chord in the chord diagram. When
the chord diagrams are coloured like the tree, then we can just use these colours and very
easily do the re-rooting process through the chord diagrams. In solving this problem, the
main difficulty lies in what this colouring will be. It turns out it is slightly convoluted to
determine the colouring of the chord diagram, and also includes changing the markers on
the ends of some of the chords. This will be described in more detail in Chapter 4.

In [27], Mencattini and Quesney introduced two very interesting ways to create tubings
on plane rooted forests, which they used to compute coefficients in the Magnus expansion,
a useful equation in quantum field theory. We expanded on what Mencattini and Quesney
did by viewing these tubed forests as plane posets. We created a transformation for these
plane posets and found a special class of forests such that after the transformation, they
are still plane rooted forests. From there, we can apply the tubings introduced by [27]
to these tubed forests before and after the transformation. Furthermore, there is some
possible future work with further abstraction of the transformation of forests into a poset
point of view.
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Chapter 2

Combinatorial Background

The following sections introduce important definitions and concepts. Rooted trees and
tubings of rooted trees are essential to the ideas presented in this thesis. Rooted trees have
many applications in enumeration, algebraic combinatorics, computer science, and physics.
We can study rooted trees further in the perspective of tubings. These tubings are related
to chord diagrams, outlined in Chapter 3. Finally, posets are introduced to present how
rooted trees can be viewed as posets.

2.1 Rooted Trees

Rooted trees play a central role in this thesis, thus it is important to understand some
basic properties and conventions concerning rooted trees.

Definition 2.1 (Rooted tree). Recursively, a rooted tree is a vertex r, called the root, and
a possibly empty multiset of rooted trees whose roots are the children of r. A plane rooted
tree is a vertex r, also called the root, and a possibly empty ordered list of plane rooted
trees whose roots are the children of r.

We can also think of a rooted tree as a graph with the root as a distinguished vertex,
and so we will use graph theoretic language when convenient. In this thesis, rooted trees
will be drawn with the roots at the top. Additionally, all trees in this thesis are plane
rooted trees, so unless otherwise stated, trees will refer to plane rooted trees and forests
will refer to plane forests of rooted trees.

Definition 2.2 (Plane forest). A plane forest is an ordered set of plane rooted trees.
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Figure 2.1: An example of two rooted trees that are graph theoretically equal, but not the
same plane rooted tree.

Definition 2.3 (Tree traversal). Given a plane tree T , a tree traversal is a specified process
of visiting every vertex of T .

The tree traversal technique used in this thesis is the pre-order traversal:

Definition 2.4 (Pre-order traversal). The pre-order tree traversal always begins at the
root. For a given vertex i with n children, let Tk be the subtree rooted its kth child (as
given in its plane structure). Visit the vertex i, then traverse every subtree Tk starting at
T1 and finishing at Tn.

One can visualize pre-order traversal by beginning at the root, walking along the edges
of the graph until all vertices have been visited, where the leftmost edge is the first edge.
When roots are oriented at the top, then pre-order traversal takes a counter-clockwise walk
around the graph. The following image is an example of pre-order traversal.

a

b

dc

e

f g

h

Figure 2.2: By following pre-order traversal, the resulting order on the tree is a, b, c, d, e,
f , g, h

Definition 2.5 (Traversal order). We call the order on the vertices resulting from the
pre-order traversal the traversal order of the tree.

Note that there are many ways to traverse a tree, and thus this term is not suitable in
the broader sense; however, in the scope of this thesis, this is the only type of tree traversal
used, thus we call this order the traversal order.
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2.2 Tubings

This thesis discusses two different notions of tubings. In this section, the notion of tubings
only refers to binary tubings. Chapter 5 introduces a different definition of tubings.

Definition 2.6 (Tube). Let t be a rooted tree or a plane rooted tree. A tube of t is a set
of vertices of t that induces a connected subgraph of t.

A connected subgraph of a rooted tree t is a tree, hence is a rooted subtree.

Furthermore, in this thesis, a tube and its induced subtree will be interpreted to be
synonymous. So for a tube t, the induced subtree will also be referred to as t.

In a very broad sense, we have the following definition of a tubing.

Definition 2.7 (Tubing). A tubing of a forest is a set of tubes.

While this thesis focuses on two types of tubings, there are many more types of tubings
[5, 14, 27]. Generally, we say that a tube is maximal if it contains every vertex of of the
forest, and minimal if it contains only one vertex.

Definition 2.8 (Binary tubing). Let T be a rooted tree or a plane rooted tree. A binary
tubing τ of T is a set of tubes such that

1. τ contains the tube of all vertices of T , and

2. each tube t of τ either is a single vertex or there are two other tubes in τ which
partition t.

(Definition 2.3 in [2].)

We can also treat our tubings recursively. Let T be a rooted tree or a plane rooted
tree. A (binary) tubing τ of T can be obtained recursively as follows:

1. τ contains the outer tube consisting of all vertices of T .

2. Pick e = uv ∈ E(T ), with u closer to the root than v. Partition the vertices V (T ) =
{A|B} such that B is the set of vertices of the subtree rooted at v. Said another
way, B induces a connected rooted subtree with v as the root and contains all of v’s
descendants and A induces a connected subgraph that contains the root of T . This
subgraph is itself a rooted tree and has u as a leaf. Set A and B to be tubes of τ .
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3. Proceed likewise to construct tubings of the trees induced by A and B.

Every tubing of T can be constructed as above. Expanding on this in another way, to find
all the tubings of a tree, for every edge in T , we “break” the edge and put the lower vertex
and all of its descendants into one tube and the rest of the tree in another tube. Then for
each tube and each edge in the tube, do the same until all of the tubes contain only one
vertex. In other words, a tubing defines a binary tree structure on the edges of the original
tree based on which stage in the hierarchy of the tubes we “break” the edge.

To improve readability, we will sometimes not draw the outermost tube, which encircles
the full tree, nor the innermost tubes around each individual vertex.

Figure 2.3: An intuitive way to build a tubing, where each tube is progressively partitioned
into two tubes, shown from left to right. The left shows only the outermost tube and the
right shows the entire tubing.

Figure 2.4: The left tubing is not a binary tubing because the outermost tube is partitioned
into three tubes. The right tubing shows the correction of the left tubing by adding a new
tube around some of the vertices.

Lemma 2.9. Let T be a rooted tree and τ a tubing of T . Then if t is any tube of τ , the
tree induced by the vertices of t has a tubing given by t and those tubes of τ which are
properly contained in t.

Proof. Immediate from the definition.

Remark 2.10.
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In view of the last lemma, a tubing is either

(i) the unique tubing of T = •, or

(ii) determined by (τ ′, τ ′′) where τ ′ is a tubing of some proper rooted subtree t′ and τ ′′

is a tubing of t′′ = T \ t′, where t′′ contains the root of T .

(Remark 2.7 in [2].)

Generally given a tubing τ of the tree T ̸= • we will write t′ and t′′ for the two rooted
trees induced by the tubes that partition the outermost tube of τ with the root of T being
in t′′. The sub-tubings τ ′ and τ ′′ denote the tubings of the subtrees t′ and t′′, respectively,
as in Remark 2.10.

2.3 Chord Diagrams

Next, we introduce chord diagrams, which play a key role in the first two chapters of this
thesis. Chapter 3 will discuss a map between chord diagrams of rooted trees, which is
not only combinatorially interesting, but has direct applications to series expansions in
quantum field theory.

Definition 2.11 (Rooted chord diagram). A rooted chord diagram is a set of ordered pairs
of the form (ai, bi) such that {a1, b1, a2, b2, . . . , an, bn} = {1, 2, . . . , 2n} and ai < bi for each
1 ≤ i ≤ n. The pair (ai, bi) is the ith chord in the chord diagram. The chord such that
bi = 2n is the root chord and the chord such that ai = 1 is the bud chord.

Definition 2.12 (Right end and left end of a chord). For a chord ci = (ai, bi), the left end
of ci is ai and the right end is bi.

Note in [2] and other literature [26, 7, 19, 6], the root chord is defined to be the leftmost
chord, ai = 1. The reason we choose the rightmost chord to be the root is in Chapter 3,
we will see that the root chord corresponds to the root of a rooted tree, in the presented
bijection. The term bud chord is introduced in this thesis and will be discussed more in
Chapter 4.

Remark 2.13. If we consider the set {1, 2, . . . , 2n} up to cyclic permutation, then the
equivalence classes are unrooted chord diagrams.
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Remark 2.14. In the graphical sense, an unrooted chord diagram is a 1-regular graph on
a cyclically ordered vertex set. Here, chords are the edges of the graph. A rooted chord
diagram is a 1-regular graph on a linearly ordered vertex set and the ordered pair (ai, bi)
is a chord where ai is its first vertex and bi is its second vertex.

We will only consider rooted chord diagrams, so from now on, chord diagram indicates
rooted chord diagram.

Definition 2.15 (Decomposable, Indecomposable). A chord diagram is decomposable if
its vertices can be partitioned into two sets, S, T , such that s < t for all s ∈ S and t ∈ T ,
and that there are no chords (ai, bi) with ai ∈ S and bi ∈ T . In other words, all chords are
either in set S or set T . A chord diagram is indecomposable if it is not decomposable.

a1 b4a2 b1 a3b2 a4 b3a5 b5 a1 b4a2 b1a3 b2a4b3 a5 b5

Figure 2.5: The chord diagram on the left is a decomposable chord diagram and the one
on the right is an indecomposable non-crossing chord diagram

Intuitively, a chord diagram is decomposable if it is a concatenation of smaller nonempty
chord diagrams.

Definition 2.16 (Crossing, Non-crossing). We say a pair of chords (ai, bi) and (aj, bj)
cross if ai < aj < bi < bj or aj < ai < bj < bi. A chord diagram is non-crossing if it
contains no pair of crossing chords.

Definition 2.17 (Intersection graph). The intersection graph of a chord diagram is a
graph such that for each chord ci in a chord diagram, there is a vertex vi in the intersection
graph. Two vertices v1 and v2 are adjacent if the chords c1 and c2 cross in the chord
diagram.

Definition 2.18 (Connected chord diagram). A chord diagram is connected if its intersec-
tion graph is connected. A connected component of a chord diagram is a subset of chords
S such that the chord diagram S is connected.

Every connected chord diagram is inherently indecomposable.
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Note that connectivity in chord diagrams is not defined in the graph theoretical sense on
the chord diagram as a 1-regular graph, but rather on the intersection graph, see Figure 2.6.

a1 b4a2 b1a3 b2 a4 b3a5 b5

c1 c2

c3 c4

c5

c1

c5c2

c3

c4

Figure 2.6: An indecomposable, non-connected chord diagram and its intersection graph.

In this thesis, we are primarily concerned with connected chord diagrams, such as in
the example below.

a1 b4a2 b1a3 b2a4 b3a5 b5

Figure 2.7: A connected chord diagram.

2.4 Posets

Partially ordered sets, or posets, are fundamental structures in combinatorics that are
used to relate certain elements within a set. They are intrinsically related to rooted trees
because of the hierarchical structure of them concerning the root and its descendants. In
fact, as we will see in the coming chapters, forests of rooted trees can always be interpreted
as posets, and thus we can broaden our perspective of rooted forests in this way.

Definition 2.19 (Partially ordered set (poset)). A set is a partially ordered set (P,⩽) if
there exists a relation, denoted ⩽, such that for a, b, c ∈ P :

(i) transitive: if a ⩽ b and b ⩽ c then a ⩽ c.

(ii) reflexive: a ≤ a

(iii) anti-symmetric: if a ⩽ b and b ⩽ a, then a = b

10



For a, b ∈ P , if a ⩽ b or b ⩽ a then a and b are comparable. Otherwise, they are
incomparable.

We use a < b to mean a ≤ b and a ̸= b.

Definition 2.20 (Antichain). In a poset (P,⩽), an antichain is a subset of elements of P
such that all of its elements are incomparable.

A useful tool to visualize posets is a Hasse diagram. First we define the following
relation.

Definition 2.21 (Covering relation). For a poset (P,⩽) and elements a, b ∈ P , we say
that b covers a if and only if a < b and there is no c ∈ P such that a < c < b.

Given a poset (P,⩽) and elements a, b ∈ P . A Hasse diagram can be drawn such that
elements in P are vertices as described below.

Definition 2.22 (Hasse diagram). Let (P,⩽) be a poset and let a, b be elements of P . A
Hasse diagram is a directed graph such that for vertices a, b, there is an edge ab such that
a → b if and only if b covers a in (P,⩽). Conventionally, edges are not drawn with arrows,
but are oriented upwards.

In a Hasse diagram, maximal elements are displayed at the top and minimal elements
at the bottom. In a Hasse diagram, it should be clear to see the ordering on elements, and
that some elements may be incomparable. See the example below of a Hasse diagram.

a

b c d

e f

g

Figure 2.8: A Hasse diagram. We have orders g < e < b < a, g < f < d < a, e < c and
f < c. In this example, b, c, d are incomparable and e, f are incomparable. a is the unique
maximal element, and g is the unique minimal element

Hasse diagrams are helpful in many types of posets, but particularly for us because we
can easily view rooted trees as Hasse diagrams, where the root is the maximal element.
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Definition 2.23 (Predecessor, Successor). In an ordering, if b < a, then b is a predecessor
of a and a is a successor of b. If a covers b then b is an immediate predecessor of a and a
is an immediate successor of b

An immediate successor of a is the lowest ordered element c such that a < c and the
immediate predecessor of a is the highest ordered element b such that b < a.

When viewing posets as forests, we will sometimes refer to a predecessor as a descendent
and a successor as an ancestor.

Definition 2.24 (Upset, Downset). An upset of a poset (P,<) is a subset S of P such
that for every element a ∈ S, and all elements b ∈ P such that a < b, b is also in S. That
is, for every element in S, all of its successors are also in S. Similarly, a downset of (P,<)
is a subset S of P such that for every element a ∈ S, and all elements b ∈ P such that
b < a, b is also in S. That is, for every element in S, all of its predecessors are also in S.

Note. Upset may also be called upper set, or higher set. Likewise, downset may be called
lower set.

Note that the empty set ∅ is both an upset and a downset.

Definition 2.25 (Ancestry partial order). The ancestry partial order, ≺, of a tree is the
partial order on vertices of a tree where u ≺ v if u is a descendent of v.

The root is maximal in ancestry order. We may view the rooted forests as Hasse
diagrams. Note that this order is called level partial order in 4.1 of [27]. The name ancestry
order was chosen because rooted trees have a hereditary structure, where all vertices are
descendants of the root, and a vertex may have children or siblings for example.

Definition 2.26 (Generation). Let a, b be two vertices in a forest. Then a and b are in
the same generation if they have the same number of ancestors between themselves and
the roots of their respective trees.

This notion is sometimes called level, and often Hasse diagrams will reflect this in the
way they are drawn. In Figure 2.8, b, c, and d are in the same generation and e and f are
in the same generation.

The following definitions will be useful in Chapter 5.

Definition 2.27 (Double poset). A double poset is a triple (P,≤1,≤2), where P is a finite
set and ≤1 and ≤2 are two partial orders on P . (Definition 2.1 in [25])
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Definition 2.28 (Plane poset). A plane poset is a double poset (P,≤h,≤r) such that for
all x, y ∈ P with x ̸= y, x and y are comparable for ≤h if and only if x and y are not
comparable for ≤r. (Definition 1.2 in [13])

Definition 2.29 (Rightward order, <r). The rightward order, <r, of a forest is partial
ordering of vertices such that u <r v if u < v in traversal order and u and v are ≺-
incomparable.

The name rightward order was chosen because in plane forests, maximal elements ap-
pear on the right of the forest when viewed as a Hasse diagram with the roots at the top.
We draw the plane structure as a left-to-right structure in the diagram. See Figure 2.9 for
an example.

The practice of interpreting plane forests as plane posets will be explored in detail in
Chapter 5. Below is an example of a plane poset with the two orders <r and ≺ (Defini-
tion 2.29 and Definition 2.25). One may observe that all pairs of vertices are comparable
in exactly one of the two orders.

a

b

c d

e

f

c ≺ b ≺ a
d ≺ b ≺ a
e ≺ f
a <r e
a <r f
b <r e
b <r f
c <r d <r e
c <r d <r f

Figure 2.9: Example of ≺ (2.25) and <r (2.29) on a forest F . Here, b is a ≺-predecessor
of a and f is a <r-successor of a, for example.
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Chapter 3

Bijection Between Tubed Rooted
Trees and Connected Chord Diagram

We now define a bijection between tubings of rooted trees and chord diagrams. This is
not only interesting on a purely mathematical level, but also has applications to Dyson-
Schwinger equations, as discussed in [2]. The next section on re-rooting trees will make
use of this bijection.

Definition 3.1 (Rooted tree insertion place). Given a plane rooted tree T , a rooted tree
insertion place (RTIP) is a place where a new subtree can be added. Specifically, at each
vertex there is an insertion place before any of the children of the vertex, between any two
consecutive children, and after the last child, and all insertion places are of this form.

We place an order on the RTIPs as follows. Let r be the root of T and let t1, t2, . . . , tk
be the list of subtrees (whose roots are the children of r in that order). Define the order
on the insertion places, xi, of T in this order:

• the insertion place before t1.

• all insertion places of t1 in this same order, applied recursively on t1.

• the insertion place between t1 and t2.

• all insertion places of t2 in this same order recursively on t2.

...

• the insertion place after tk
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Additionally, we say that for RTIP xi, its vertex is the vertex where a tree is joined to
when inserted at xi.

In other words, during a pre-order traversal on T , each vertex is given at least one
insertion place. If a vertex vi is a leaf, it only has one insertion place. If vi has k children,
then it has k+1 insertion places (between each of the children and to the left and right of
them.)

To think of this intuitively, this order on insertion places can be visualized by drawing
the tree and walking along the edges counter clockwise starting to the left of the root,
where every time a vertex is visited an insertion place is added. See Figure 3.1.

When we say a tree has insertion place xi, we mean that xi is the i
th insertion place on

the tree.

Lemma 3.2. Let T be a rooted tree with n vertices. Then the number of insertion places
of T is 2n− 1.

Proof. Let T be a rooted tree with n vertices and let Pn be the number of insertion places
of T . We claim that Pn = 2n−1 by induction. Base case n = 1. There is only one insertion
place on a single vertex. So P1 = 1. Now, suppose for a plane rooted tree with n vertices
that Pn = 2n − 1. Suppose a new vertex, vj, is added at an insertion place, x, on an
existing vertex vi. Note that every plane rooted tree on n+ 1 vertices can be constructed
by adding a new vertex in this way to a plane rooted tree on n vertices. Then the new
vertex vj has one insertion place; vi loses the x insertion place (replaced by the edge v0v1)
and thereby gains two new insertion places on either side of the edge v0v1. Therefore,
Pn+1 = Pn − 1 + 2 + 1 = Pn + 2 for n ≥ 1. Thus Pn+1 = 2n− 1 + 2 = 2(n+ 1)− 1.

Next we define similar insertion places for chord diagrams. The way chord diagrams
are constructed is by inserting one chord diagram into another at an insertion place. The
chord diagram insertion places can be visualized as the space between ends of chords in a
chord diagram, see Figure 3.1. If there are n chords in a given chord diagram, then there
are 2n chord ends, so the number of places between them is 2n − 1. The following is a
formal definition of chord diagram insertion places for indecomposable chord diagrams.

Definition 3.3 (Chord diagram insertion place). Let C be a chord diagram of size n. Let
yi be the pair (i, i+1). Then the chord diagram insertion places (CDIPs) for C are given
by yi for i ∈ {1, 2, . . . , 2n−1}. We order the chord diagram insertion places by their index.

Lemma 3.4. Let C be a chord diagram of size n. Then the number of insertion places of
C is 2n− 1.
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Proof. Let Qn be the number of CDIPs on a chord diagram with n chords. We claim that
Qn = 2n − 1. This follows directly from the definition of chord diagram insertion places.
There are exactly 2n− 1 pairs {i, i+ 1} for i ∈ {1, 2, . . . , 2n− 1}.

Below shows the chord diagram insertion places and rooted tree insertion places.

x1

x3

x2

x5

x4

x7

x6

x9

x8
y1 y2 y4y3 y5 y6 y7 y8 y9

Figure 3.1: Left: rooted tree with RTIPs (Definition 3.1) xi indicated (Definition 3.3).
Right: The chord diagram with CDIPs yi indicated.

Lemma 3.5. Let T ′′ a rooted tree with insertion places x′′
1, x

′′
2, . . . , x

′′
k and let T ′ be a tree

with insertion places x′
1, x

′
2, . . . , x

′
l. Let T be the rooted tree constructed by inserting T ′

into T ′′ at T ′′’s IP x′′
i .

1. The new tree T has k + l − 1 insertion places.

2. The indexing of the insertion places of T is as follows:

• Every insertion place x′′
j ∈ {x′′

1, x
′′
2, . . . , x

′′
i−1} in T ′′ becomes xj in T . In other

words, there is no change from T ′′ to T for all insertion places before xi.

• The insertion place x′′
i in T ′′ gets replaced by new insertion places because this is

where T ′ is being inserted. The new insertion places are determined as follows.
Every insertion place x′

j ∈ {x′
1, x

′
2, . . . , x

′
l} in T ′ becomes xj+i−1 in T .

• Every insertion place x′′
j ∈ {x′′

i+1, x
′′
i+2, . . . , x

′′
k} in T ′′ becomes xj+l−1 in T .

Therefore the new indices are as follows:

x′′
1 7→ x1 x′′

i 7→ xi x′′
i+1 7→ xi+l

x′′
2 7→ x2 7→ xi+1 x′′

i+2 7→ xi+l+1

...
...

...

x′′
i−1 7→ xi−1 7→ xi+l−1 x′′

k 7→ xk+l−1
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Proof.

1. T ′′ has k insertion places and T ′ has l insertion places. Because IP xi is being replaced
by the l insertion places, it must not be counted. Therefore T has k+ l− 1 insertion
places.

2. • The insertion places in T ′′ before the IP where T ′ is inserted are {x′′
1, x

′′
2, . . . , x

′′
i−1}.

They are not affected by the insertion of T ′ at xi, so they remain the same in
T .

• IP x′′
i gets replaced by IPs of T ′. So we are adding l IPs after xi−1, so T ′’s jth

insertion place becomes the (j + i− 1)th IP of T .

• This follows from the previous two points. That the last IP of T ′ is xi+l−1 so
the rest of the IP’s must be xi+1, . . . , xk+l−1. Because l IPs are added before the
jth IP of T ′′ in the insertion, but one IP (xi) is removed, then x′′

j of T ′′ becomes
xj+l−1 in T .

See the following example of how this indexing works.

x′
1 x′

3

x′
2

T ′′

x′′
1

x′′
2

x′′
3

x′′
4

x′′
5

T ′

x1

x8

x6

x2

x3

x4

x5 x7

x9

T

insertion at x3

Figure 3.2: Here, k = 3 and l = 5, so T ′′ has 3 insertion places and T ′ has 5 insertion
places. T is obtained by inserting T ′ into T ′′ at insertion place x3, so i = 3. In the tree T ,
x1, x2, x3 correspond to x′

1, x
′
2, x

′
3 in T ′ x4, . . . , x8 correspond to x′′

1, . . . , x
′′
5 in T ′′, and x9 is

the new insertion place arising from the insertion.

The primary goal of this section is to define a bijection between tubings of rooted trees
and connected chord diagrams. We have seen that when the same size, they have the same
number of insertion places, which may give us insight of the connection between these two.
Additionally, chord diagrams can be made by inserting some smaller chord diagram into
another one [32], as we’ve seen with rooted trees, and specifically tubings of rooted trees.
This insertion process will be defined in Definition 3.8. This bijection gives a connection
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between tubing expansions of Dyson-Schwinger equations and chord diagram expansions
of Dyson-Schwinger equations.

We have seen that chord diagrams with n chords and rooted trees with n vertices have
the same number of insertion places. Now we introduce a map from RTIPs to CDIPs.

Definition 3.6. Given a plane rooted tree t with n vertices and a chord diagram C with
n chords, let xi be the ith RTIP of t and let yi be the ith CDIP of C under the orders
given in Definition 3.1 and Definition 3.3. Then define the map f via f(xi) = yi.

Lemma 3.7. The number of RTIPs on a plane rooted tree t with n vertices is the same as
the number of CDIPs on a chord diagram C with n chords and therefore f is a bijection
between the RTIPs of t and the CDIPs of C.

Proof. Let Pn be the number of RTIPs on a plane rooted tree with n vertices. Let Qn be
the number of CDIPs on a chord diagram with n chords. By Lemma 3.4 and Lemma 3.2,
Pn = Qn and hence f is a bijection.

In a general sense, one can insert a chord diagram into another at any insertion place.
Definition 3.8 describes the particular method we will use, but it is not the only way a
chord diagram can be inserted. Below we have a corollary pertaining to the insertion of a
chord diagram into another yielding an indecomposable chord diagram.

Now we are ready to define the main bijection.

Definition 3.8. Let τ be a tubing of a plane rooted tree t with n vertices. Then, define
the chord diagram ϕ(τ) as follows.

Base case: if t = • then τ is the unique tubing of • and ϕ(τ) is the unique chord
diagram with one chord.

Recursive step: Let t′′, t′, τ ′′, and τ ′ be as in Remark 2.10. Let C ′′ and C ′ be ϕ(τ ′′)
and ϕ(τ ′) respectively. Let x be the insertion place where t′ is inserted into t′′. Let y be
the CDIP given by f(x) (relative to C ′′). Then define C = ϕ(τ) as follows: Insert C ′ into
y such that the resulting chord diagram is a disconnected indecomposable chord diagram.
Let q′ be the bud chord of C ′. Take the left end of q′ and move it before all chords of C ′′.
The resulting chord diagram is C. Graphically, the procedure is shown in Figure 3.3.
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t′
t′′

insertion

t′

t′′

xi

yi

insertion

C′
C′′

C

Figure 3.3: Recursive step of the insertion of a chord diagram into another.

insertion at x1 & y1

n = 1

n = 2

n = 3

y1 y2 y3

insertion at x2 & y2

insertion at x3 & y3

Figure 3.4: On the left, we have the first two rooted trees and chord diagrams where n = 1
on top and n− 2 in the middle. On the bottom left, the RTIPs and CDIPs are shown. On
the right, we have the insertion of a singleton into each of the three insertion places on the
n = 2 rooted tree/chord diagram.
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C ′′ C ′

C

T ′′ T ′
T

insertion at x3x3

insertion at y3

y3

Figure 3.5: An example of the insertion of C ′ into the third insertion place of C ′′.

Wilf and Nijenhuis described this chord diagram insertion in [32] used this insertion to
enumerate chord diagrams, and Stein proved in [35] that every connected chord diagram
is generated exactly once in this way. It is called root-share decomposition in [26].

Corollary 3.9. By Lemma 3.7, and for chord diagrams C ′′ and C ′, let C be the indecom-
posable chord diagram obtained by inserting C ′ into C ′′ at the ith insertion place of C ′′,
defined in Definition 3.8. Then the indices of C are the same as described in Lemma 3.5.

Remark 3.10. The description provided in Definition 3.8 is a more intuitive way to de-
scribe the map ϕ. The following is a more formal definition of the recursive step of the
map. With t′′, t′, τ ′′, τ ′, C ′′, and C ′ as above, define C = ϕ(τ) as follows:

Let {1, . . . , 2n} be the vertices of C ′′ with CDIP y = {i, i+1}. Similarly let {1, . . . , 2m}
be the vertices of C ′ with bud chord (1, k). The vertices of C are {1, . . . , (2n+ 2m)}. The
chords of C are defined from the chords of C ′′ and C ′ as follows:

(i) For each chord {aj, bj} from C ′:

• the bud chord {1, k} becomes {1, k + i}
• all other chords {aj, bj} become {aj + i, bj + i}.

(ii) For each chord {aj, bj} from C ′′:

• if aj ≤ i and bj ≤ i, then {aj, bj} becomes {aj + 1, bj + 1}
• if aj ≤ i and bj > i, then {aj, bj} becomes {aj + 1, bj + 2m}
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• if aj > i and bj ≤ i, then {aj, bj} becomes {aj + 2m, bj + 2m}

(or to say it another way, if aj (or bj) ≤ i, then aj (or bj) becomes aj + 1 (or bj + 1),
and if aj (or bj) > i, then aj (or bj) becomes aj + 2m (or bj + 2m)).

Write τ ′ ⊕x τ
′′ for the tubing obtained by inserting τ ′ into τ ′′ at insertion place x and

write C ′ ⊕y C
′′ for chord diagram obtained by inserting C ′ into C ′′ at insertion place y in

the above manner.

Theorem 3.11. ϕ is a bijection from the set of tubed rooted plane trees with n vertices
to the set of rooted connected chord diagrams with n chords. (Theorem 5.15 in [2].)

Proof. To prove this, we construct the inverse map, µ : C 7→ τ .

Let C be a rooted connected chord diagram. If C is just one chord, then define µ(C)
to be the unique tubing of •. Otherwise, let r be the bud chord. The removal of the bud
chord results in either a connected chord diagram, or a disconnected, indecomposable chord
diagram. Note that this indecomposable diagram will be a sequence of nested connected
components. Recall the definition of disconnected chord diagrams from Definition 2.17.
We take r together with all but the outermost component of C\r and call it C ′, and let
the rest of the chord diagram, namely the outer component, be C ′′ = C\C ′, which yields
connected chord diagrams C ′′ and C ′.

The last thing we need is the insertion place where C ′ is inserted into C ′′ to give the
chord diagram C. To specify this, let η be the smallest index in C greater than 1 of a chord
end in C ′. In C, the insertion place to the left of this chord is yη−1. So, looking at insertion
places of C ′′, we see that C = C ′ ⊕η−2,η−1 C

′′ and so yη−2 is the insertion place in C ′′ we
are looking for. This is because when C ′ is inserted into C ′′, the bud chord of C ′ is shifted
all the way to the left of C ′′, as described in Definition 3.8; and by Lemma 3.5, the CDIPs
to the left of C ′ in C are increased by 1 after insertion, thus in the inverse, we subtract 1.
Recall from Definition 3.6 and Lemma 3.7 that there exists a map f−1 that takes a CDIP
and gives an RTIP. Recursively let τ ′′ = µ(C ′′) and τ ′ = µ(C ′) and x = f−1(y) as an RTIP
of t′′. Now define t to be the insertion of t′ into t′′ at x and define τ to be the tubing of t
given by the tubes of τ ′′ and τ ′ along with one tube containing all of t. Then t and τ give
µ(C).

Directly from these definitions, we see that µ and ϕ are mutual inverses, and the number
of vertices in t is equal to the number of chords in C.
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Remark 3.12. Let’s look at the physical context in an example. In a piece of Yukawa
theory studied in [4], the Dyson-Schwinger equation is

G(x, L) = 1 + xG(x,
∂

∂ρ
)−1(eLρ − 1)F (ρ)

∣∣∣∣
ρ=0

where F (ρ) =
∑

i≥0 ciρ
i−1.

This is a special case of (1) from [2]. The tubing solution of this equation is

G(x, L) = 1 +
∑
t

x|t|
∑
τ

∏
v∈V (t)
v ̸=rt(t)

cb(v,τ)−1

b(τ)∑
i=1

cb(τ)−i
Li

i!

where the outer sum is over plane rooted trees and the middle sum is over tubings of
t. This is the corresponding special case of the solution discussed in [2] on page 9. Earlier
work [26] gave a chord diagram solution to the same Dyson-Schwinger equation, which has
the form

G(x, L) = 1 +
∑
C

x|C|c
|C|−k−1
0 cdk−dk−1

cdk−1−dk−2
· · · cd2−d1

d1∑
i=1

cd1−i
Li

i!

where the outer sum is over rooted connected chord diagrams C and the terminal chords
of C are at indices d1 < · · · < dk. The definition of terminal chord and the order in which
they are indexed can be found in [26] and [2]. The bijection described in this chapter
provides the link between these two expansions. The verification of the various parameters
can be found in Section 5.3 of [2].
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Chapter 4

Re-rooting Tubed Rooted Trees

In this chapter, the previous bijection between chord diagrams and tubed rooted trees will
be used to study how the chord diagram corresponding to a tubed rooted tree changes when
trees undergo a process called re-rooting. We aim to be able to find the chord diagram of
a re-rooted tree without finding the re-rooted tree first, in other words, to go directly from
one chord diagram to another. Part of the motivation of studying this is that tubings don’t
rely on the rooted structure, but the bijection does, and this relationship is interesting. In
the broader sense, this doesn’t have immediate applications, but it is useful in exploring
ways in which chord diagrams relate to the rooted tree, and understanding the bijection
from Chapter 3 more thoroughly. It is an interesting interpretation of re-rooting trees,
which is a common tree operation in mathematics.

4.1 Preliminaries

Broadly speaking, re-rooting a rooted tree is the process of taking any of the tree’s other
vertices to be the root, while preserving the graphical structure of the tree. The following
is a specific process of re-rooting a tubed rooted tree, which will be simply be called re-
rooting, given in the following definition.

Definition 4.1 (Re-rooting). Let T be a rooted tree with n > 1 vertices and root rB. Let
rP be the leftmost child of rB, which is the second vertex in traversal order (rB being the
first). Re-rooting the tree is a map, ϕ that takes rP to be the new root, while preserving
the graph structure of the tree. The adjacency of the vertices of T remains the same, but it
becomes a different rooted tree T ′. Additionally, the planar structure is preserved, where
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the order of a vertex’s children is preserved before and after re-rooting, and when a parent
becomes a child the cylic order around the vertex is preserved. With tubed rooted trees,
the tubes remain the same on the tree during the re-rooting, meaning for a tube ti of T ,
there is a tube t′i in ϕ(T ) which contains all the same vertices in ti.

re-rootingrP

rB rP

rB

Figure 4.1: An example of re-rooting a tubed rooted tree.

For the rest of this chapter, for some feature κ of a tubed rooted tree, such as vertex or
tube, we use c(κ) to be the corresponding feature of its chord diagram. For example, for
the vertex v in a tree, c(v) is the chord corresponding to v. κ could also indicate a tube
or the tree itself. Note however for insertion places, the notation used in Definition 3.1
and Definition 3.3 is xi and yi for RTIP and CDIP respectively. Although c(xi) = yi, in
this chapter we will continue to use the notation xi and yi for insertion places of trees and
chord diagrams.

Definition 4.2 (Rooted path). A tree is a rooted path if it is a path in the graph theoretic
sense and any of its vertices is the root. Note that the root does not need to be one of the
terminal vertices.

Lemma 4.3. Let rB be the root of a tree T and let rP be the root of the tree T ′ after
re-rooting T . Suppose rB has q children and rP has s children, which implies rB has (q+1)
insertion places in T , and rP has (s+ 1) insertion places in T . Then:

1. rB has q insertion places in T ′

2. rP has s+ 2 insertion places in T ′

We use the letters B and P because they are drawn in blue and purple respectively in
the figures.
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re-rooting
rP

rB
rP

rB

x1

x3

x2

x5

x4

x7

x6

x9

x8

x1

x3

x2

x5

x4

x7

x6

x9

x8

rP

rB

x1

x3
x2

x5

x4

x7

x6

x9

x8

RTIP
re-indexing

Figure 4.2: In this example, rB has q = 2 children and 3 insertion places, x1, x7, x9, in T
and rP has s = 2 children and 3 insertion places, x2, x4, x6 in T . After re-rooting, in T ′,
rB has two insertion places and rP has 4 insertion places.

Proof.

1. In T , rB has q children, but rP is one of them. Thus, after re-rooting, rP is no longer
a child of rB. So rB has q − 1 children in T ′, and thus has q insertion places.

2. In T , rB is not a child of rP but after re-rooting, rB is a child of rP . Additionally, rP
does not lose any children in the re-rooting. Thus, in T ′, rP has s + 1 children and
therefore has s+ 2 insertion places.

The first and last insertion places essentially merge during the re-rooting. This can be
thought of as the first one rotating clockwise and merging with the first one in its path,
which is the last insertion place of T . See Figure 4.3. Additionally, the insertion place that
rP gains is the last insertion place of the tree T ′, which can be visualized as splitting what
was the first insertion place of rP in two.

Lemma 4.4. Let T be a tree with n vertices, and let xi be an insertion place of T and let
x′
i be the same insertion place relative to its vertex after re-rooting. Then, during every

re-rooting, x′
i = xi−1 for 2 ≤ i ≤ 2n− 1. In other words, if a tube of a tubing is located on

the ith insertion place, then after re-rooting, it will be in the (i− 1)th insertion place (for
2 ≤ i ≤ 2n− 1.)

Proof. A tree T with n > 1 vertices has root rB and after re-rooting, the new tree T ′ has
root rP . Let x1, . . . , xm be the insertion places of the tree T . Then x1 is the first insertion
place on the root rB before rP and x2 is the first insertion place on rP . Let T

′ be the tree
after re-rooting with insertion places x′

1, . . . , x
′
m. Because rP is the root after re-rooting,

x2 becomes the first insertion place of the tree T ′, so x′
1 = x2. After the re-rooting, x1

disappears because rB loses an insertion place.
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Because the order of the insertion places doesn’t change in the re-rooting, the loss of
x1 causes every insertion place index to decrease by 1.

Furthermore, because the ith RTIP is exactly the ith CDIP for every i among all insertion
places, thus the result is analogously true for CDIPs.

See the below figure for a visualization.

re-rooting
rP

rB

x1

x3

x2 xk−1

xk

xi

. . . rB
x1

x3

x2

xk

. . .

. . . . . .
xi

. . . xk−1

⋆ RTIP
re-indexing rB

xkx1
. . .

xi−1

. . .
. . .

xk−2

xk−1
x2

. . .

rP rP

Figure 4.3: This shows the IP shifts on re-rooting a general tree. The last insertion place
after re-rooting, denoted by ⋆ is the new IP gained by rP . One can see that the insertion
place marked x1 combines with xk after re-rooting.

Definition 4.5 (Bud of a tube). The bud of a tube is a vertex defined recursively as
follows:

1. If the tube is a single vertex, then that vertex is the bud

2. Suppose the tube t is comprised of tube t′ being inserted into tube t′′. Then the bud
of t is the bud of t′.

Intuitively, the bud can be understood to be the last vertex inserted of each tube, which
is the bud of the last inserted tube. The following is an example of a tubed rooted tree
and its buds.
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a

b

c d
e

f

t4

t2

t1

t3

t5

Figure 4.4: An example of a tubed rooted tree with tubes marked t1, . . . , t5 (only marking
tubes of size > 1 because otherwise, the bud is trivial). The buds, bi, of each tube ti are
b1 = d, b2 = d, b3 = c, b4 = f, b5 = f

Lemma 4.6.

1. The root of a tube, ri, always corresponds to the chord whose right end is the farthest
right chord of all the chords in that tube.

2. The bud of a tube, bi, always corresponds to the chord whose left end is the farthest
left chord of all the chords in that tube.

Proof. We use Theorem 3.11.

By induction. When the tree is a single vertex, then that vertex is both the root and
bud, and the chord diagram is a single chord, thus its right end is the farthest right in the
chord diagram and its left end is the farthest left in the chord diagram. Now, assume the
statement is true for every tree and chord diagram with k < n vertices/chords. Let t some
tree with n vertices such that t is obtained by the tube t′ being inserted into t′′.

1. Suppose t′′ has k vertices. The root, r′′, of t′′ is also the root of t. Additionally, c(r′′)
is the rightmost chord of c(t′′) by the induction hypothesis. Then because c(t′) is
inserted into a CDIP, and all CDIPs are to the left of the right end of the root chord,
thus the root chord c(r′′) is the rightmost chord of c(t).

2. Suppose t′ has k vertices. The bud, b of t is the bud of t′, by definition. By the
induction hypothesis, the bud of t corresponds to leftmost chord of c(t′). When c(t′)
is inserted into c(t′′) to form c(t), the left end of the bud of c(t′) is pulled all the way
to the left, and thus the bud chord is the leftmost chord in c(t).
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Observe that for tree a T and tube ti = T , the bud of ti corresponds to the bud chord
as defined in Definition 2.11, which is the leftmost chord of the entire chord diagram.

Definition 4.7 (Root change). If a tube ti has a different root before and after re-rooting,
then we say it has a root change.

Definition 4.8 (Bud change). If a tube ti has a different bud before and after re-rooting,
then we say it has a bud change.

This leads us to the following lemma, which is important in the partitioning the vertices
discussed in the next section.

Note that at least one tube exists that contains both rB and rP because the maximal
tube does.

Definition 4.9 (t∗). For a tree T which n > 1 vertices, let t∗ be the minimal tube
containing both rB and rP .

Lemma 4.10. Let T be a tree with at least 2 vertices. In the re-rooting of T , the only
subtubes of T which have a root change are t∗ and all tubes containing t∗. All tubes not
contained in t∗ and tubes inserted into t∗ have the same root in T and ϕ(T ).

Proof. Let T be the tree being re-rooted. Let t∗ be as defined in Definition 4.9. Because
t∗ contains both rB and rP , then it has size > 1, so it is made up of two disjoint subtubes.
Furthermore, one of these subtubes contains rB and the other contains rP because otherwise
t∗ would not be minimal. Let tB and tP be these disjoint subtubes containing rB and rP ,
respectively. In T , tB is the root, and in ϕ(T ), tB is the root. Thus, rB is the root of t∗
and rP is the root of ϕ(t∗), so t∗ has a root change. Furthermore, tubes containing t∗ have
a root change because their roots are the root of t∗, which has a root change. Now we
consider the tubes not containing t∗, broken down in two cases: proper subtubes of t∗ and
tubes not contained in t∗.

Case 1: All subtubes of t∗ are contained in either tB or tP . The root of tB is rB in
both T and ϕ(T ) and likewise for tP and rP . Thus the roots of all subtubes of tB and tP
remain the same in T and ϕ(T ) because each subtube is inserted into disjoint subtube that
contains the root tB or tP .

Case 2: All tubes not contained in t∗, which don’t contain t∗, are contained in some
tube inserted into a vertex of t∗. Let ti be some such tube contained in a tube inserted
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into t∗ at vertex u ∈ t∗ and let ti have root ri. Then for any vertex v ∈ ti, there is a unique
path from v to tP that must go through ri and u (where ri ⪯ u). Because the tube inserted
into t∗ is inserted at u before and after re-rooting, then after re-rooting, ri ⪯ u, and the
path from v to tB also goes through ri and u. Thus ri is the root of ti after re-rooting.

This leads to the following corollary.

Corollary 4.11. For a tree T , every tube that does not contain t∗ is the same rooted tree
before and after re-rooting.

Proof. Because every tube that is not T or t∗ has the same root before and after re-rooting,
there is no way that the tree may change if the root is the same.

Corollary 4.12. Let T be a tree with at least 2 vertices. Every time T is re-rooted, there
is exactly one tube, namely t∗, in which a bud change occurs.

Proof. This follows from Lemma 4.10 and Corollary 4.11. Because no tubes other than
tubes containing t∗ change, the only bud changing tube must contain t∗. Now, t∗ must have
a bud change because it is comprised of two disjoint subtubes: tP and tB. By definition,
the bud of T is in tP . But after re-rooting, tP contains the new root, and therefore the
bud of tB must be the bud of t∗ after re-rooting. Furthermore if ti ⊃ t∗, then ti is obtained
by inserting some tube t′ into t∗ or into some tube containing t∗. Therefore, the bud of ti
is in t′ and because the insertion of t′ also happens after re-rooting with t′ unchanged, the
bud of ti remains unchanged after re-rooting.

Definition 4.13 (Active tube). The unique tube with the bud change, denoted t∗ is called
the maximal active tube, and all subtubes of it are called active tubes.

Definition 4.14 (Inactive tube). All tubes that are inserted into t∗, and not contained in
t∗ are called inactive tubes.

Note that tubes properly containing t∗ are neither active nor inactive. When we say
an inactive insertion, we mean that a tube is inserted into a vertex in t∗. A tubing such
that the maximal tube is strictly larger than t∗, has n inactive insertions if n tubes were
inserted into it or a previous inactive insertion. Additionally, vertices within active tubes
are called active vertices. See the example below.
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t2

t1

t3

Figure 4.5: This tubed rooted tree has 3 inactive insertions, marked t1, t2, and t3. All
vertices in these tubes are inactive vertices, and the vertices in t∗ are active vertices.

4.2 Marking Tubed Rooted Trees

The method for re-rooting the chord diagram corresponding to a tubed rooted tree relies
on partitioning the vertices of the tree into four markings. In all the figures in this chapter,
we colour these four as blue (B), purple (P ), orange (L), and green (R). The L and R are
named so because in rooted paths, the orange and green vertices are on the left and right,
respectively. For every vertex vi in the rooted tree, we mark the chord corresponding to
that vertex, c(vi) the same. However, for some of the chords, we will mark just the left end
of the chord differently, which will be explained in more detail at the end of this section.

Let t∗ (which we will colour yellow in the figures) be the maximal active tube, that is,
the tube with the bud change. We know that t∗ is split up into two subtubes; call the
two disjoint maximal subtubes tB and tP . Then the root, rB, of the entire tree is also the
root of the tube tB, and the new root after the re-rooting, rP , is the root of the tube tP .
Additionally, let b be the bud of tB and bP be the bud of tP . We colour all vertices in tB
and tP blue and purple, respectively. We will give rP a darker colour of purple to indicate
its importance in the re-rooting, but this is not strictly necessary for the rules we define.
In the chord diagram, chords c(tP ) and c(tB) are coloured the same as the vertices.
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rP

rB
t∗

tB

tP b

bP

Figure 4.6: Colouring the vertices of the active tubes. The maximal active tube, t∗, is
shown in yellow.

Determining the colouring of vertices of inactive tubes is straightforward if the tree is
a path. In the path case, we partition the rest of the vertices as follows. Let the tube
inserted into vertices of P (here, the bud of tP ) be marked L (coloured orange), and all
other tubes inserted into L vertices also be marked L. Similarly, let the tube inserted into
B-vertices (i.e. the bud b) be marked R (coloured green), and all other tubes inserted into
vertices of R also be marked R. Visually, we see that all vertices of L are on the left side
of the tree, and all vertices of R are on the right side of the tree.

rP

rB

Figure 4.7: Example of a path tree partitioned with markings B,P , L, and R and its
corresponding chord diagram.

Now, if the tree is not a path, we have the exact same marks B,P, L,R for vertices,
but determining how to colour each vertex is not as simple. We use the same rule for the
active vertices as described earlier, but the inactive tubes have new rules. For inactive
vertices, we introduce a method for determining which marking they get, using a special
insertion place, xµ, which we will call the split place. The purpose of xµ is to determine
whether an inserted tube is L or R marked.

Let T ′′ be a tree with insertion places x1, . . . , xµ, . . . xn+1. If a tube is inserted into T ′′

into any IP xj such that 1 ≤ j ≤ µ, then it is marked L. Otherwise it is marked R. In

31



other words, a tube ti inserted at xµ or any IP before xµ (in pre-order traversal), then ti
is marked L.

We first will define the split place yµ of a chord diagram, as it is straightforward and
easy to see.

Definition 4.15 (Split place). The split place, yµ of a chord diagram is the CDIP imme-
diately to the left of the right end of the root rP of c(tP ). For chord diagram c(t′′) with
spit place y′′µ′′ , if the inactive insertion c(t′) is inserted into or to the left of yµ, then c(t′)
will be coloured orange, and if c(t′) is inserted to the right of yµ, then c(t′) will be coloured
green.

Visually, we can see yµ as the rightmost insertion place under rP (dark purple).

The following lemma explains how we get the exact value of the index µ of the split
place of a chord diagram.

Lemma 4.16. Suppose a chord diagram c(t′′) is composed only of active chords, meaning
its corresponding tubed rooted tree t is the maximal active tube, t∗. Suppose the tube tP
has m insertion places. Then the split place, yµ, of c(t

′′) has index µ = m+ 1.

Otherwise suppose a chord diagram c(t′′) has some inactive insertions. Let µ′′ be the
index of the split place y′′µ′′ in the chord diagram c(t′′). Suppose a chord diagram c(t′) with
k insertion places is inserted into c(t′′) to form c(t) with split place yµ

1. If c(t′) is inserted at or to the left of y′′µ′′ (and therefore coloured orange), then the
index of the split place of c(t) is µ = µ′′ + k + 1

2. If c(t′) is inserted to the right of y′′µ′′ (and therefore coloured green), then the index
of the split place of c(t) is µ = µ′′ + 1.

Proof. The first part of the lemma concerns the case where all the tubes are active tubes,
meaning all vertices are either in tP or in tB. Now, c(tP ) has m insertion places, thus the
rightmost one, y′′m is the insertion place immediately to the left of the right end of c(rP ).
Because c(t′′) is comprised of c(tP ) being inserted into the first insertion place of c(tB), we
have that µ = m+ 1 because the bud chord of c(tB) adds one insertion place to the left of
c(tP ).

The second part of the lemma concerns the case where there are inactive tubes in the
chord diagram c(t′′).
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1. Insertion of c(t′) into IP y′′i where i ≤ µ′′. This means there are k IPs added to the
left of y′′µ′′ in addition to one extra one because the insertion splits the y′′i of c(t′′) into
two insertion places. So the rightmost IP under rP has index µ′′ + k + 1.

2. Insertion of c(t′) into IP y′′j where µ′′ ≤ j. This means that the number of insertion
places that c(t′) adds to the chord diagram doesn’t affect y′′µ′′ except for the bud of
c(t′) whose left end is added to the left of y′′µ′′ . Thus the rightmost IP under rP has
index µ′′ + 1.

The following is an example of how this works.
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T ϕ(T )

xµ1

yµ∗

µ∗ = m+ 1 = 2
m = 1

xµ∗

xµ2 xµ3

yµ2
yµ3

yµ1

µ1 = µ∗ + k + 1 = 6
k = 3

µ2 = µ1 + 1 = 7
k = 1

µ3 = µ2 + k + 1 = 9

k = 1

µ∗ µ1

µ2 µ3

Figure 4.8: How to recursively build the chord diagram with the correct colouring using
the index µ. One can see that yµ in the chord diagram corresponds to xµ in the rooted
tree, and that the colouring of the vertices agrees with the colouring of the chords. The
first insertion is coloured orange because it is inserted at xµ∗ , the second is coloured green
because it is inserted after xµ1 and the third is coloured orange because is inserted before
xµ2 . Finally, we end up with xµ3 , which tells us how to colour future insertions.
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The value of µ for the split place yµ in a chord diagram gives us the split place xµ in
the tubed rooted tree. Thus, we use the value given in the above lemma for colouring the
vertices of tubed rooted trees.

Another observation is that when the insertion is coloured orange, in the new tree, xµ

remains the same relative to the vertex it is attached to, even though the index µ changes.
For example, in Figure 4.8, xµ2 and xµ3 are in the same place relative to the vertices.
Furthermore, when the insertion is coloured green, xµ shifts to a higher place in the pre-
order traversal, the degree of which depends on the size of the insertion. In Figure 4.8, xµ2

is the next insertion place after xµ1 because k = 1 in the green insertion.

Finally, we will adjust the colours on the ends of some of the chords, which will be
important in distinguishing between different types of chords during the re-rooting. Recall
the bud of the tube t∗ is marked B (coloured blue).

Changing ends of chords

In the chord diagram, colour just the left end of c(b) orange. Additionally, for each set
of orange chords corresponding to an inserted tube, mark the left end of its bud chord R.
For the example in Figure 4.7, the updated chord diagram is shown below.

Figure 4.9: Example from the path rooted path in Figure 4.7, where the left end of some
chords have new colourings.

An example for changing the marking of the ends of chords corresponding to a non-path
tree is shown below.
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re-colouring the ends

Figure 4.10: We show how to change the colour of ends of certain chords.

The non-path example from Figure 4.8 is shown below with the updated chord ends.

Figure 4.11: Updated chord end marking from Figure 4.8

Definition 4.17 (Block). In a chord diagram, for a chord marking w, a consecutive block
of ends W is a collection of ends of chords ai, . . . , aj such that every end is marked w. The
chords whose ends are in a consecutive block are not necessarily all coloured w, but the
ends in the block must be.

For example, in Figure 4.11, the three leftmost chord ends are a consecutive block
of ends because they are each coloured green, despite the second and third chord being
orange.

4.3 Re-rooting Tubed Rooted Trees

The goal of this chapter is to learn how re-rooting affects the chord diagrams. More
specifically, given a tubed rooted tree, after identifying its colouring, we can find the chord
diagram corresponding to the next tree after re-rooting directly from the initial chord
diagram.

36



First, the algorithm for going from initial chord diagram to post-re-rooting chord dia-
gram is described below.

Definition 4.18 (Algorithm for re-rooting chord diagrams). We perform the re-rooting on
the chord diagrams by first identifying which steps will be taken and then performing them
simultaneously.

1. The right end of the chord c(rP ) is moved to all the way to the right, so that it is
the rightmost chord.

2. For each maximum consecutive block of c(Le) chord ends, swap the block with the
block’s immediate leftward neighbour.

We call this map ρ. Thus for a chord diagram c(T ), the algorithm produces ρ(c(T )).

re-rooting

swap swap

(a)

(b)

(c)

Figure 4.12: An example of how re-rooting works. (a) is the chord diagram of the tree
on the left, with the full colouring. (b) shows the steps needed to be taken, where the
block of orange chord ends is indicated. (c) shows the chord diagram after performing
the algorithm, which is in fact the correct chord diagram corresponding to the tree on the
right.

We use the following lemma to prove that this algorithm works.
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Lemma 4.19. In the chord diagram c(t∗), the following two properties hold:

1. The immediate leftward neighbour of c(b) is the bP (the bud of c(tP ).) Furthermore,
the bud of c(tP ) is the only chord that is leftward of c(b).

2. The bud chord of c(tB), c(b), is the only chord of c(tB) that lies between the first and
last ends of c(tP ). All other ends of c(tB) lie to the right of c(tP ) ends.

Proof. This follows from the construction of a chord diagram from the rooted tree. Recall
that for a tube ti, the bud of ti corresponds to the leftmost chord in the chord diagram
c(ti). So by construction of the chord diagram c(t∗), c(tP ) is inserted into the first CDIP
of c(tB), meaning that the only chord to the left of this CDIP is the bud c(b) of c(tB).
Then by the construction, the bud of c(tP ) is pulled to the left of the bud of c(b). Thus
the immediate and only leftward neighbour of c(b) is the bud of c(tP ). Because c(tP ) is
inserted in the first insertion place, all chords of c(tB) other than the bud c(b) lie to the
right of c(tP ).

Figure 4.13: Base case of a chord diagram where the tubed tree has no inactive tubes, as
in the maximal tube is t∗.

Theorem 4.20. For a rooted tree T and its re-rooted tree ϕ(T ), the algorithm defined in
Definition 4.18 takes c(T ) to c(ϕ(T )).

Proof. By induction on the number of inactive insertions into t∗.

Base case: Suppose the tree T is t∗, meaning there are no inactive tubes. First note
that in T , tP is inserted into the first IP of tB and in ϕ(T ), tB is inserted into the last IP of
tP . The first item in the algorithm is moving the right end of c(rP ) all the way to the right
of the chord diagram. This means that rP becomes the new root and all of c(tB), except
the bud b is in the last IP of c(tP ), by Lemma 4.19. Because the left end of c(b) is coloured
orange, the second item of the algorithm is swapping c(b) with c(bP ). By Lemma 4.19, c(b)
has only one leftward neighbour, c(bP ), and therefore b becomes the new bud of the chord
diagram. The result is the chord diagram c(tB) being inserted into the last IP of c(tP ),
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and the bud being pulled to the left, which is exactly the chord diagram construction of
inserting tB into the last IP of tP . Thus ρ(c(t∗)) is c(ϕ(t∗)).

Induction hypothesis: Suppose for all trees t with fewer than n inactive insertions, we
have that ρ(c(t)) is the same as c(ϕ(t)). Suppose t′′ is a tubed tree with k < n inactive
insertions. Let T be the tree obtained by inserting a tubed tree t′ into t′′ at insertion place
xi. Recall that xµ determines whether t′ is marked L or R. First, some things to note are
as follows.

1. t′ does not have a root-change, so t′ and c(t′) do not change during re-rooting.

2. The index of the insertion place of t′ in t must decrease by 1 after re-rooting T . In
other words, t′ is inserted into ϕ(t′′) at xi − 1.

3. Let b′ be the bud of t′. Then b′ is the bud of T .

Now, we have two cases: t′ is inserted at or before xµ, in which case t′ is L-marked, or
after xµ, in which case it is R-marked. Let cL(t

′) be the chords ends of c(t′) that are L
marked (all of them except the bud, which is R-marked).

Case 1: t′ is L-marked (orange)

• Subcase 1: t′ is inserted within or immediately to the left of a L-block of chords,
called A. Here, cL(t

′) together with A forms a maximum consecutive block of L
ends. By the induction hypothesis, the chord c∗ which is immediately to the left of
A in c(t′′) swaps with all chords in A by the map ρ. Thus, when c(t′) is within A or
is the immediate leftward neighbour of A, it automatically gets included in this swap
that occurs in t′′. This swap satisfies condition 2. Thus, in c(T ), c∗ swaps with the
maximum consecutive block of L ends to form ρ(c(T )). This is the same as c(ϕ(T ))
because of condition 2.

• Subcase 2: c(t′) is inserted immediately to the right of A. Again, cL(t
′) together

with A form a maximum consecutive block of L ends. By the induction hypothesis,
ρ swaps A with the chord c∗. If c∗ were to only swap with A, then the index of the
insertion place of c(t′) would not decrease at all, so the only way its IP can decrease
by one is if c∗ also swaps with cL(t

′). Thus if c∗ swaps with the maximum consecutive
block of L ends, which includes cL(t

′), then ρ(c(T )) is the same as c(ϕ(T )), which
satisfies condition 2.
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• Subcase 3: t′ has no L-neighbours. From the induction hypothesis, in the chord
diagram, locally at yi, nothing happens in t′′, because there are no L blocks. So
when c(t′) is inserted, the only way for condition 2 can be satisfied is if cL(t

′) swaps
with its immediate leftward neighbour, which is equivalent to inserting c(t′) into the
IP yi−1, which is c(ϕ(T )).

Case 2: t′ is marked R (green)

By definition of µ in the chord diagram, c(t′) is inserted into c(t′′) rightward of all chords
in c(tP ) and leftward of the right end of tB’s bud, c(rB). By the induction hypothesis, in
ρ(c(t′′)), the chord c(rP ) jumps over all chords in c(tB), so if c(t′) is inserted somewhere
between c(rP ) and c(rB), then c(rP ) also jumps over c(t′). Thus inserting c(t′) into yi−1 of
c(ϕ(t′′)) is the same as performing ρ on T , therefore ρ(c(T )) is the same as c(ϕ(T )).
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Chapter 5

Magnus Expansion Tubings

5.1 Background

Introduced by Wilhelm Magnus in 1954 [23], the Magnus expansion is a tool in applied
mathematics and mathematical physics that is used to solve first-order homogeneous linear
differential equations with time-dependent coefficients. It is particularly useful in quantum
mechanics as it provides highly precise approximations of the time evolution operator,
which essentially provides a way to map an initial state of the system to its state at any
later time. Combinatorics fits into this story in that forests can used to break the Magnus
expansion down cleanly and systematically to get a better conceptual understanding of
the series. The Magnus expansion can be seen as a special case of Lie series, hence can
solve differential equations from Lie theory. Further, there is a post-Lie case, which is also
studied in [27, 10, 9, 1]. Thus we can relate algebraic mathematics and combinatorics to
the Magnus expansion.

This chapter concerns a different definition of tubings applied to computing the Magnus
expansion coefficients, inspired by Mencattini and Quesney from their paper [27] about
post-Lie algebras and the Magnus expansion. Mencattini and Quesney introduced two
different types of nested tubings of forests and developed a method for using these tubings in
Magnus expansion coefficient computations. We have expanded on the work of Mencattini
and Quesney by focusing on the ordered properties of these forests, as well as revised some
of their definitions to better fit this new perspective.

In order to understand these tubings, we must define two orderings on the forest which
align with the definition of plane posets, and thus we can explore the plane poset properties
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of forests and study these tubings. We define a special type of forest, which we call leftward
forests, that allow a duality between the two types of tubings using the plane poset property.
This work opens the door to extending these nested tubings beyond forests to posets.

In [27], the forests are drawn with the roots at the bottom. For consistency with the
rest of this thesis, the roots are drawn at the top. Additionally, regarding the ancestry
partial order defined in Chapter 2, drawing the roots at the top allows the forests to be
more naturally viewed as Hasse diagrams for the ancestry partial order, defined in the next
section. When we change the convention from [27] so that the roots are at the top, the
traversal order and ancestry order are preserved.

Figure 5.1: The underlying forest are the same, but in this thesis we use the convention
with the roots drawn on the top (left) and [27] uses the convention that roots be at the
bottom (right).

5.2 Preliminary Definitions

Recall the ancestry order ≺ (2.25) and rightward order <r (2.29) from the poset section
of Chapter 2. We will make use of these two orders along with the traversal order (Defini-
tion 2.5) in this section. Note that the traversal order that we made use of in Chapter 3
and Chapter 4 is the same as what [27] calls the canonical order of a tree in Section 4.1.
Additionally, we use the definition of rightward order <r in place of a slightly different
definition from [27], which they call horizontal order (<h) in Section 4.5 of [27]. However,
this definition of rightward order is stronger in that <h⊆<r. Horizontal order is defined
as the order of the set of roots of the forest increasing from left to right, thus, <r when
restricted to the set of roots is <h in [27].

Note that the traversal order from Definition 2.5 is the common refinement of the
rightward order and the ancestry order.

Recall from Chapter 2 an example of a plane forest and the partial orders on the
vertices in Figure 2.9. The following is another example of a plane forest and the three
orders defined.
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a

b

e

dc

f

h

g

e ≺ b ≺ a
f ≺ b
c ≺ a
d ≺ a
g ≺ h

a <r g
a <r h
b <r c <r d <r g
e <r f <r c <r d <r h

a < b < e < f < c < d

g < h

(i)

(ii) (iii)

Figure 5.2: Here, we have (i) traversal orders on each tree (ii) ancestry orders (iii) rightward
orders.

Definition 5.1. Root(F ) is the set of roots of a forest F . (Defined in Section 4.5 of [27].)

Definition 5.2 (Horizontal forest). A horizontal forest is a forest where all trees are trivial,
i.e. single vertices.

Note that in Definition 33 of [27], horizontal forests are denoted by {•×n}.
When viewed as posets, a horizontal forest is an antichain in the ancestry order (≺)

because none of the vertices have children. Also observe that for a horizontal forest F ,
Root(F ) = V (F ).

5.3 A Different Kind of Tubings

In this section, we will introduce a new definition of tubings of trees and forests introduced
by Mencattini and Quesney in [27], which we call Magnus tubings, or M-tubings for short, so
as to differentiate between other notions of tubings mentioned in this thesis. Additionally,
throughout this chapter, M-tubings will just be called tubings.

Let F be a forest and v ∈ V (F ), which we will view as a poset.

Definition 5.3 (bv). The set bv is the set of children of v. In other words, v covers every
element in bv in ancestry order ≺. (From Section 4.5 of [27].)

Now, we define M-tubes and M-tubings of plane rooted forests.

Let F be a plane rooted forest with Root(F ). We introduce a virtual vertex v∗ and
edges between v∗ and all v ∈ Root(F ). Call this new forest F∗. Then F∗ is a tree with root
v∗. Note that Root(F ) is bv∗ .

Definition 5.4 (M-tube of a forest). A set of vertices of F is anM-tube ti if for t∗ = (ti∪v∗),
t∗ is an upset of (V (F∗),≺) and for each v ∈ t∗, (t∗ ∩ bv) is an upset of (bv, <r).
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This definition is a revised version of definitions introduced by Mencattini and Quesney
[27]. In their paper, they have a different definition for a tube of a tree and a tube of a
forest (Definition 44 and Definition 45 in [27].) Introducing the vertex v∗ allows us to
transform a forest to a tree, in a way which automatically incorporates their definition of
a tube of a forest into their definition of a tube of a tree. It’s important to observe that
when F is a tree, adding this virtual vertex is unnecessary, and thus in this chapter, when
F is a tree, we may just use F in place of F∗. Note that when we refer to a tube ti of a
forest, ti does not include the vertex v∗. In their paper, a tube of a forest is defined as a
subset of vertices such that its intersection with the set of roots is an <r-upset of the roots
of F and its intersection with each tree is a possibly empty tube. The way we envelope
their definition of a tube of a forest into their definition of a tube of a tree is by adding
the vertex v∗. Because v∗ must be in t∗ (otherwise it is not an upset), we have that bv∗ is
exactly Root(F ). The tube’s intersection with the roots is an upset of (bv, <r) and thus
satisfies [27]’s definition of tube of a forest.

One way to conceptualize the notion of a tube is when we say upset of (bv, <r) of a tree,
essentially what that means is if a vertex v is in a tube, then all of its siblings rightward of
v are also in the tube. Recall that ∅ is an upset of (bv, <r). We can also see that for any
tree, the root and the entire tree are always both tubes, and for any forest, the <r-maximal
root of (Root(F ), <r) and entire forest is a tube.

Definition 5.5 (Nested M-Tubing). Two tubes are nested if one of them is a subset of the
other. A nested M-tubing, τ , of a forest F is a collection of pairwise nested, nonempty tubes
of F such that τ contains at least two tubes and it contains the maximal tube (Definition
47 and 48 in [27].)

a

b c

a

b c

t1 t2

Figure 5.3: On the left: t1 is a tube of a forest F . On the right, t2 is an upset of V (F ) but
it is not a tube because ba = {b, c} and b <r c, so (t2 ∩ ba) is not an upset of ba.
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v∗

t t∗

Figure 5.4: An example of how use the virtual vertex v∗ to find a tube of a forest. On the
left is the forest F with tube t and on the right is the forest F∗ with tube t∗.

t1

t2

t1

t2a

b c

e

d

f g

a

b c

e

d

f g

Figure 5.5: Another example of a tube and a non-tube. On the left, t2 ∩ ba = {c, d} which
is an upset of ba. On the right t2 ∩ ba = {b, d} which is not an upset of ba.

Definition 5.6 (Boundary). Let τ be a nested tubing where {t1, t2, . . . , tk} is the set of
tubes in τ such that the nesting of τ is t1 ⊂ t2 ⊂ · · · ⊂ tk−1 ⊂ tk. For a tube ti ∈ τ , the
boundary, ∂ti, of ti is ∂ti = (ti\ti−1). If a tube does not contain any subtubes, then the
boundary is the tube itself. (From section 4.5 of [27].)

In other words, the boundary is all the vertices in ti that are not contained in any
nested subtubes of ti. This definition is worded differently from [27]’s definition of the
boundary, which contains a typo and is not very specific. See Figure 5.6 and Figure 5.7
for examples of boundaries.

5.4 Vertical and Horizontal Nested Tubings

The following section describes two types of M-tubings of forests that are useful in de-
termining Magnus expansion coefficients, vertical nested tubings and horizontal nested
tubings. Both are used for computing coefficients, but the method using vertical nested
tubings is recursive, while the method using horizontal nested tubings is not.
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5.4.1 Vertical Nested Tubings

Definition 5.7 (Vertical Nested Tubing). A tubing τ of a forest F is a vertical nested
tubing (VNT) if for all ti ∈ τ :

(i) ∂ti is not a horizontal forest with more than one vertex

(ii) Either all the roots of ∂ti are children of a vertex v of a subtube of ti or are children
of v∗

(Vertical nested tubings are defined in Definition 49 in [27].)

The definition in [27] is worded slightly differently, but the definition given above is a
cleaned up version that reduces ambiguity. The case where all the roots are children of v∗
implies that the roots of the boundary are in Root(F ), and so none of them are children
of any vertex of any subtree of ti.

For a forest F , let V(F ) be the set of all of its vertical nested tubings. Note that
Definition 50 in [27] calls this Tub(F ) instead.

t1
t2 ∂t1 ∂t2

t1

t2

∂t1 ∂t2

t3

t4
t5

∂t4∂t3 ∂t5

Figure 5.6: On top: a tubing of the forest on top shows a non-example of a VNT. Both
conditions in Definition 5.7 fail. The first fails because ∂t2 is a horizontal forest with 2
vertices and the second fails because the roots of ∂t1 are not children of the same vertex
of a subtube. On bottom: a tubing of the same forest satisfies all the conditions, thus is a
VNT. The colours are here to distinguish each boundary.
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t1

t2
t4

∂t1 ∂t2 ∂t3

t3

∂t4

Figure 5.7: Another example of a vertical nested tubing.

Figure 5.8: All VNTs of a forest F (Example 52 in [27].)

5.4.2 Horizontal Nested Tubings

Definition 5.8 (Horizontal Nested Tubing). A tubing τ of a forest F is a horizontal nested
tubing (HNT) if the boundary of each tube is a horizontal forest. [Definition 53 in [27].]

t1

t2

∂t1 ∂t2

t3

∂t3

Figure 5.9: An example of a horizontal nested tubing. All the boundaries are horizontal
forests of size 2.

For a forest F , let H(F ) be the set of all of its horizontal nested tubings. In [27], this
is called hTub(F ).
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Figure 5.10: All HNTs of a forest F (Example 55 in [27].)

5.5 Magnus Expansion Coefficients

The motivation of Mencattini and Quesney [27] for defining the vertical and horizontal
nested tubings was to compute coefficients of the Magnus expansion. This section will
outline how they use the nested tubings to do this.

5.5.1 Coefficients from Vertical Nested Tubings

The method for finding coefficients of the Magnus expansion using vertical nested tubings
is recursively defined. Recall that V(F ) is the set of vertical nested tubings of a forest F .
Let F ′ be the set of forests that does not include horizontal forests. We will denote the
coefficient for a forest F as mF .

Theorem 5.9. (Proposition 58 in [27]) For the singleton tree, let m• = 1. For every forest
F ∈ F ′, write the coefficient of F in the Magnus expansion to be

mF =
∑

t∈V(F )

mt

where mt is the coefficient determined by the subtree induced by the tube t in a tubing.
Then the formula for mt is

mt =
−1

|t|!
∏
t′∈t

m∂t′

where |t| is the number of tubes in a particular tubing.
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Example 5.10. The following is an example of computing coefficients of the tree .

τ1 τ2

Figure 5.11: There are two VNTs on this forest, as shown here.

The calculation is:
mF = mτ1 +mτ2

mF =

((
−1

3!

)
× 1× 1× 1

)
+

((
−1

2!

)(
−1

2

)
× 1

)
=

1

12

We can easily see that the term −1
2

in mτ2 comes from the unique tubing of .

Example 5.11. Using the coefficient obtained from Example 5.10, we can find the coeffi-
cients of the forest below.

τ1 τ2 τ3

Figure 5.12: There are three VNTs on this forest, as shown here.

mF = mτ1 +mτ2 +mτ3

mF =

((
−1

4!

)
× 1× 1× 1× 1

)
+

((
−1

3!

)(
−1

2

)
× 1× 1

)
+

((
−1

2!

)(
−1

12

)
× 1

)
= 0
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5.5.2 Coefficients from Horizontal Nested Tubings

While finding the Magnus expansion coefficient from vertical nested tubings is recursive,
the following is a closed form formula when using horizontal nested tubings.

The following lemma is useful for the formula for coefficients given by horizontal nested
tubings, which follows easily from Definition 5.6. Recall from Definition 5.6, the tubes of
τ are nested such that t1 ⊂ t2 ⊂ · · · ⊂ tk−1 ⊂ tk.

Lemma 5.12. Let τ be an M-tubing as described in Definition 5.6. For all ti, tj ∈ τ , we
have that ∂ti ∩ ∂tj = ∅. Furthermore, every vertex is contained in ∂t1 ∪ ∂t2 ∪ · · · ∪ ∂tk.

Proof. Take v ∈ V (F ). Because tk is the whole forest, v is in at least one tube. Then,
there exits i such that v ∈ ti and v /∈ ti−1, meaning ti is the smallest tube containing v.
Thus v ∈ ∂ti but v /∈ ∂tj for i ̸= j. For j < i v /∈ tj so v /∈ ∂tj. For j > i, j − 1 ≥ i, so by
the nesting property, v ∈ ti ⊆ tj−1 ⊂ tj. Thus v ∈ tj−1 and v ∈ tj, so v cannot be in the
boundary of tj.

Recall that H(F ) is the set of all horizontal nested tubings of a forest F . Then, as
with vertical nested tubings, the Magnus expansion coefficient given by horizontal nested
tubings is given below:

Theorem 5.13. (Theorem 64 in [27]) The coefficient in the Magnus expansion for a forest
F is given by

mF =
∑

τ∈H(F )

mτ

Where the formula for mτ is given by

mτ =
(−1)|t|−1

|t|
∏
ti∈τ

1

|∂ti|!

where |∂ti| is the number of vertices in the boundary ∂ti and |t| is the number of tubes in
the tubing τ .

Note that in Section 4.6.2 of [27] the formula is presented differently and involves some
algebra not covered in this thesis.
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Example 5.14. The coefficient from the forest below is 1
180

.

τ1 τ2 τ3 τ4

Figure 5.13: There are four HNTs on this forest, as shown here.

mF = mτ1 +mτ2 +mτ3 +mτ4

mF =
1

5

(
×15

)
+

−1

4

((
13 ×

(
1

2!

))
+

(
13 ×

(
1

2!

)))
+

1

3

(
12 × 1

3!

)
=

1

180

Because τ2 and τ3 both have the same set of boundary sizes, (1, 2, 1, 1), the term −1
4

(
13 ×

(
1
2!

))
gets counted twice.

This example is given in Example 65 in [27].

5.6 Double Posets and Tubings

Given the orderings on plane rooted forests described in this chapter, we now focus on
viewing these forests as plane posets (recall Definition 2.27 and Definition 2.28.) This
section will describe how we transform certain forests using this plane poset definition to
other plane rooted forests while preserving the nested tubings. There is potential to expand
this idea to all posets, rather than just plane forests, however this thesis only covers plane
forests. The following section of this chapter makes use of the tubings from [27] but is
original work.

Given a forest, as viewed as a plane poset with orderings ≺ and <r, recall that for any
two vertices, u, v, that either u and v are comparable by the ≺ relation or the <r, but
not both. Thus, we may easily swap the orders ≺ and <r for every pair of vertices in the
forest. The hope is to find duality between vertical nested tubings and horizontal nested
tubings on the same graph by swapping the orders on every pair of vertices in a forest. We
define a transformation φ.
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Definition 5.15. Let φ be a function that takes as input (V (F ), <r,≺) and swaps the
orderings on F for all vertices; that is, for any two vertices, u, v, if u <r v in F , then u ≺ v
in φ(F ), and if u ≺ v in F , then u <r v in φ(F ).

Additionally, φ(φ(F )) = F because if u <r v in F , then u ≺ v in φ(F ), then u <r v in
φ(φ(F )) and vice versa for u ≺ v in F .

When we start with a forest, F , the resulting poset φ(F ) is not necessarily a forest of
rooted trees or even a forest. The following example illustrates this.

φ
a

b

c d

e

f ab

c

d

ef

c ≺ b ≺ a
d ≺ b
f ≺ e
a <r e
a <r f
b <r e
b <r f
c <r d <r e
c <r d <r f

c <r b <r a
d <r b
f <r e
a ≺ e
a ≺ f
b ≺ e
b ≺ f
c ≺ d ≺ e
c ≺ d ≺ f

Figure 5.14: Example of the forest F shown in Figure 2.9. Here, φ(F ) is not a forest.

5.6.1 Ladders and Horizontal Forests

Definition 5.16. A rooted ladder is a rooted path (recall Definition 4.2) such that a
terminal vertex is the root.

Because this thesis only deals with rooted trees, rooted ladders will simply be referred
to as ladders, when unambiguous.

Lemma 5.17. Rooted ladders and horizontal forests map to each other in φ. For any
rooted ladder tree T , φ(T ) is a horizontal forest, and for every horizontal forest F , φ(F )
is a ladder tree.

Proof. Suppose a tree T is a ladder with vertices v1 ≺ v2 ≺ · · · ≺ vn. There are no two
vertices vi, vj such that vi <r vj. Then in the φ transformation, this ordering becomes
v1 <r v2 <r · · · <r vn, and no two vertices vi, vj such that vi ≺ vj. By definition, this is a
horizontal forest.

The argument is the same the other direction.
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Lemma 5.18. Suppose F is a ladder and let F̂ be the horizontal forest φ(F ). Then every
nested tubing of F is a nested tubing of F̂ .

Proof. Let τ be a nested tubing of F . First, we know that the nested structure is preserved,
so it suffices to show that that all the tubes of τ are tubes of F̂ . Let F̂∗ be F̂ with virtual
vertex v̂∗ (defined in Definition 5.4) and let t̂∗ = (ti∪ v̂∗). Thus t̂∗ is an upset of (V (F̂∗),≺)
because it is made of root v̂∗ and a subset of v̂∗’s children. Therefore, the first condition
of Definition 5.4 is satisfied, that t∗ is an upset of (V (F̂∗),≺).

Now, the second condition of a tube states that for each vi ∈ t∗, (t∗ ∩ bv) is an upset of
(bv, <). Let b̂v be the bv value for vertices in F̂ . Note that for all v ∈ F̂ , b̂v = ∅, so we only
need to verify that (t̂∗∩ b̂v∗) is an upset of (b̂v∗ , <) in F̂ . Recall that b̂v∗ = Root(F̂ ) = V (F̂ ),
so (t̂∗ ∩ b̂v∗) = ((ti ∪ v∗) ∩ V (F̂ )) = ti. Therefore, we need to verify that ti is an upset of
V (F̂ ). Because ti is a tube of F , then ti is an upset of (V (F ),≺) In the transformation φ,
we have that (V (F ),≺) becomes (V (F̂ ), <r), thus ti must be an upset of (V (F̂ ), <r). In
a horizontal forest, the traversal order is the same as <r, thus ti is an upset of (V (F̂ ), <),
and the second condition is satisfied.

Now, we have a parallel proof in the other direction.

Lemma 5.19. Suppose F is a horizontal forest and let F̂ be the ladder φ(F ). Then every
nested tubing of F is a nested tubing of F̂ .

Proof. Let τ be a nested tubing of F . As stated in the previous lemma, it suffices to show
that all the tubes of τ are tubes of F̂ . Let ti be a tube of τ . Because F̂ is a tree, the first
condition of Definition 5.4 is equivalent to saying that a tube ti is an upset of V (F̂ ,≺),
which we want to prove. Let v̂∗ be the virtual root of F∗ and t∗ = (ti ∪ v∗). Because ti is
a tube of F , then (t∗ ∩ bv∗) = (t∗ ∩ V (F )) is an upset of (bv∗ , <) = (V (F ), <). Thus ti is
an upset of (V (F ), <r). In the transformation, (V (F ), <r) becomes (V (F̂ ),≺). Thus ti is
an upset of (V (F̂ ),≺), as desired.

Now, for the second condition, we wish to show that (ti ∩ bv) is an upset of (bv, <). F̂
is a ladder, so for any v ∈ ti, either bv is a single vertex, u, or bv = ∅. Thus (ti ∩ bv) = bv
or (ti ∩ bv) = ∅. The empty set is an upset of bv and bv is an upset of itself. The second
condition is satisfied.

Now we have a similar result for ladders and horizontal forests, which is more to the
crux of this chapter, that draws a relation between HNTs and VNTs.
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Remark 5.20. Any tube ti of a ladder is either a single vertex or a ladder, because ti is an
upset of (V (F ),≺). Moreover, any tube ti of a horizontal forest is also a horizontal forest.

φ

Figure 5.15: An example that shows this characterization.

Lemma 5.21. Let F be a ladder and F̂ be the horizontal forest after the transformation
φ. Then:

1. All nested tubings of F are VNTs

2. All nested tubings of F̂ are HNTs.

Proof. 1. Let τ be any nested tubing of ladder F and let ti ∈ τ . From Remark 5.20 we
have that ∂ti is either a single vertex or a ladder, so condition (i) of Definition 5.7 is
satisfied. Furthermore, there is only one root of ∂ti, so condition (ii) is satisfied.

2. Let τ be any nested tubing of horizontal forest F̂ and let ti ∈ τ . Then because F̂ is a
horizontal forest and from Remark 5.20, we have that every tube is also a horizontal
forest, and Definition 5.8 is satisfied.

Lemma 5.22. For each ladder F and horizontal forest F̂ , there is exactly one HNT of F
and exactly one VNT of F̂ . Further, the HNT τ of F in the transformation φ is the VNT
τ of F̂ .

Proof. Let τ be the nested tubing of F with the maximal number of tubes such that for
each tube ti, ∂ti = vi. Because the boundary of each tube is a single vertex, then each
boundary is a horizontal forest, and Definition 5.8 is satisfied, and τ is a HNT of F . Thus
τ is a HNT of F . Now we claim that there are no other tubings of F that are HNTs of F .
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Let τ ′ ̸= τ be a nested tubing of F . Then there is at least one tube ti such that ∂ti is not
a single vertex. Suppose for the sake of contradiction that ∂ti is a horizontal forest. Then
there are two vertices u, v in ∂ti that are not adjacent in the ladder, implying there exists
a vertex w such that, without loss of generality, u ≺ w ≺ v. Then the tube maximal tube
nested in ti is not an upset because v is not contained in it. Therefore, τ ′ is not a valid
nested tubing.

Now, let τ be the nested tubing of F̂ with the maximal number of tubes such that
for each tube ti, ∂ti = vi. Because the boundary of each tube is a single vertex, then
each boundary is a horizontal forest with exactly one vertex, conditions (i) and (ii) of
Definition 5.7 are satisfied, and τ is a VNT of F̂ . Now we claim that there are no other
tubings of F̂ that are VNTs of F̂ . Let τ ′ ̸= τ be a nested tubing of F̂ . Then there is at
least one tube ti of τ

′ with a boundary of more than one vertex. Because F̂ is a horizontal
forest, then ∂ti is a horizontal forest, and (i) of Definition 5.7 fails. Thus τ ′ is not a VNT
of F̂ .

Finally, clearly the HNT τ of F maps to the VNT τ of F̂ because they each have the
property that ∂ti = vi.

Lemma 5.23. Let F be a ladder and let F̂ be the horizontal forest φ(F ). Then:

1. Every VNT of F is an HNT of F̂

2. Every HNT of F̂ is a VNT of F

Proof. Let τ be a VNT of F . Then by Lemma 5.21, τ can be any nested tubing of F ,
and thus is also a nested tubing of F̂ by Lemma 5.18 and therefore is an HNT of F̂ . The
equivalent is true for τ an HNT of F̂ . By Lemma 5.21, τ can be any nested tubing of F̂ ,
and by Lemma 5.19, is also a nested tubing of F .

Lemma 5.22 and Lemma 5.23 tell us that for a forest F which is either a horizontal
forest or a ladder, φ(F ) is a bijection between VNTs of F and HNTs of F̂ .

Corollary 5.24. Let F be either a ladder or a horizontal forest. Then there is a bijection
between VNTs of F and HNTs of F̂ .

Ladders and horizontal forests are fundamental types of forests that have this duality
between vertical nested tubings and horizontal nested tubings, hence the results from this
subsection will be useful in the following subsection.
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5.6.2 Leftward Forests

As we’ve seen in examples (such as in Figure 5.14), not all rooted forests map to rooted
forests in φ. But there is a distinct class of forests that do, which we call leftward forests.
In fact, ladders and horizontal forests are the most basic leftward forests. Next we define
this class of forests that we transform using φ. First, we introduce a few definitions.

Definition 5.25 (Heir, Spare). A vertex v is an heir if it is a minimal element in the <r

order. Every vertex that is not an heir is called a spare.

Definition 5.26 (Leftward Forest). A leftward forest is a forest such that only an heir
may have children. We call the class of all leftward forests LF .

a b c d

e

h
g

k

j

l

i

f

Figure 5.16: Example of a leftward forest. The heirs are a, e, g, j, k and the spares are
b, c, d, f, h, i, l.

Note that horizontal forests are leftward forests because no vertices have children. Lad-
ders are leftward forests because every vertex is an heir.

Now we take the forest from Figure 5.16 and show its transformation under φ in Fig-
ure 5.17.
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φ

Figure 5.17: Forest from Figure 5.16 and its dual in the transformation φ.
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This next lemma is about a property of leftward forests. It will be useful in the proof
for the lemma that follows, which says that we need a forest to be a leftward forest in this
transformation φ.

Lemma 5.27. For a forest F ∈ LF , let y be the youngest heir. Then y is the youngest
heir in φ(F ).

Proof. If y is the youngest heir in F , then for all heirs vi in F , y ≺ vi and for all spares
ui in F , y <r ui. Therefore, in φ(F ), y <r vi and y ≺ ui. Because F ∈ LF , there are no
other vertices. So y ∈ φ(F ) is a minimal element in both orderings <r and ≺.

Lemma 5.28. Given a plane rooted forest F , φ(F ) is a plane rooted forest if and only if
F is a leftward forest. Furthermore, φ(F ) is also a leftward forest.

Proof. We begin this proof by using two claims. First we show that a leftward forest maps
to a leftward forest in φ and second we show that leftward forests are the only forests that
map to leftward forests in φ.

Claim 1: If F is any leftward forest, then φ(F ) is also a leftward forest.

Suppose F is a leftward forest. Let S = V (F ) and let S∗ be the set of exactly all
the heirs, so S∗ and y the youngest heir. Therefore S∗ is a ladder in F and S\S∗ is a
horizontal forest in F . Therefore, by Lemma 5.17, S\S∗ is a ladder and S∗ is a horizontal
forest disjoint from S\S∗ in φ(F ). We aim to show that φ(F ) ∈ LF , so we check that
(S\S∗)∪ y are <r minimal in φ(F ) and that no element of S∗\y has a child in φ(F ). This
will give that (S\S∗)∪ y are the heirs of φ(F ), S∗\y are the spares of φ(F ), and that φ(F )
is a leftward forest. First, we know that in F , S\S∗ are spares, so (S\S∗) ∪ y are leaves,
therefore they are ≺-minimal in F . Thus, in φ(F ), they are <r-minimal, and therefore are
heirs in φ(F ). Next, we show that no element in S∗\y has a child in φ(F ). In F , S∗\y are
heirs, so they are <r-minimal in F . Therefore, in φ(F ), they are ≺-minimal, thus they are
leaves and have no children in φ(F ). Hence we have that for F ∈ LF , φ(F ) ∈ LF .

Claim 2: For every forest F that is not a leftward forest, φ(F ) is not a rooted forest.

Let F /∈ LF be a forest. Suppose v is some vertex in F . Then because F is not a
leftward forest, there exists some spare, u with a child u′. Then we have the following
orders: u′ ≺ u, v <r u, and v <r u′. Therefore, in φ(F ), the orders become v ≺
u, v ≺ u′, and u′ <r u. Then φ(F ) is not a rooted forest because v has two parents.

Therefore, if F is not a leftward forest, then F̂ is not a leftward forest. Thus, both
conditions are proved, and we can conclude that φ(F ) if a leftward forest if and only if F
is a leftward forest.
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From now on, for a leftward forest F , we will let F̂ be the leftward forest resulting from
applying φ to F .

Corollary 5.29. For a forest F ∈ LF , every heir except y in F becomes a spare in F̂ and
every spare in F becomes an heir in F̂ .

This follows directly from the proof above, Lemma 5.28.

Thus, because we have this duality, we can extend this duality to tubings on leftward
forests.

Lemma 5.30. Let F ∈ LF . A subset ti ∈ V (F ) is a tube if and only if for every vertex
vi ∈ ti, we have that

1. all vertices vj ≻ vi are in ti

2. all vertices uj >r vi are in ti.

In particular, τ is a nested tubing of F if all the tubes in τ satisfy these properties.

Proof. (=⇒) Suppose ti is a tube of F . Let F∗ = F ∪ v∗ be the forest with virtual vertex
v∗ and t∗ = ti ∪ v∗. Then by definition, ti is an upset of (V (F∗),≺). Thus for some vertex
vi ∈ t∗, every vertex vj such that vi ≺ vj is also in ti, therefore condition (1) is satisfied.
For the second condition, suppose not, that is, suppose there exists some uj >r vi such
that uj /∈ t∗. Thus uj is a spare with parent vk ∈ F∗ such that vk ≺ vj ⪯ vi. Without loss
of generality, suppose vk ∈ t∗, because, if not, we can choose vk in place of uj. We know
that vj ⪯ vi. Thus vj, uj ∈ bvk but uj /∈ t∗ ∩ bvk , so t∗ ∩ bvk is not an upset of bvk , so ti is
not a tube, a contradiction, so condition (2) must hold.

(⇐=) Suppose ti is some subset of the vertices of F∗ = (F ∪ v∗) such that (1) and (2)
hold all some vertices vi ∈ ti. We wish to show that t∗ is a tube and thus ti is a tube.
First, we know that for all vertices vj ≺ vj−1 ≺ · · · ≺ v1 ≺ v∗ are in t∗. Therefore t∗ is
an upset of (V (F∗),≺). For the second condition, let vk be the parent of vi, and we have
that all vertices rightward of vi are in t∗, implying that all of the children of vk rightward
of vi are in t∗. Therefore bvk ∩ ti is an upset of bvk . This same argument applies for all vi
in the tube t∗, including for the <r-maximal elements in ti, because for them, vk would be
v∗, and bv∗ ∩ t∗ is an upset of bv∗ .
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We use this lemma to prove the following result which gives us a bijection between
nested tubings of F and nested tubings of F̂ .

Lemma 5.31. Let F be a forest such that F ∈ LF and let τ be a nested tubing of F .
Then τ is also a nested tubing of F̂ .

Proof. We have from Lemma 5.30 that for a vertex vi in a tube ti, then all vertices vj, uj ∈ F

such that vj ≻ vi and all vertices uj >r vi are also in ti. Then in F̂ , all vertices vj >r vi
and all vertices uj ≻ vi are in t∗. Then by Lemma 5.30, τ is a nested tubing of F̂ .

φ

Figure 5.18: An example of a nested tubing on the forest from Figure 5.17. We can see
that the all of the tubes in this tubing are also tubes in φ(F ).

Lemma 5.32. Let τ be a nested tubing of any plane rooted forest F . For every ti ∈ τ , if
every ∂ti is a ladder, then τ is a a VNT.

Proof. Proof by definition of VNTs (5.7.) For all ti ∈ τ , the following two conditions must
be satisfied. The first condition is that ∂ti is not a horizontal nested forest with n > 1
vertices. Because the boundary of each tube is a ladder, then the only way it can be a
horizontal forest is if it has one vertex. So the first condition is satisfied. The second
condition only relies on the boundary being a forest with more than one tree. Because the
boundary of each tube is a ladder, there is only one root, so it is only the child of a single
vertex, whether v∗ or a vertex of a subtube, thus satisfying condition two.

Theorem 5.33. Let F be a forest in LF .

1. For any HNT, τ , of F , τ is a VNT of φ(F ).

59



2. It is not true that for any VNT, τV , of F , τV is an HNT of φ(F ).

Proof.

1. by the definition of HNT (5.8), the boundary of every tube ti ∈ τ is a horizontal
forest. Because all horizontal forests in F translate to ladders in F̂ , then for τ of F̂ ,
the boundary of every tube is a a ladder. By Lemma 5.32, τ of F̂ is a VNT.

2. See the following counterexample.

φ

Figure 5.19: This example shows a valid VNT on F , and the same tubing on F̂ , which is
not a valid HNT.

φ

Figure 5.20: An example that shows a horizontal nested tubing of T becoming a vertical
nested tubing in φ(T ).

Forests that are not leftward forests will result in posets containing cycles and/or non-
rooted trees. This obviously will not be applicable to the VNTs and HNTs of plane rooted
forests. But possibly, these nested tubings can be extended to the poset perspective, rather
than just trees.
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Chapter 6

Conclusion

6.1 In Conclusion

We have studied two different types of tubings of forests of rooted trees, binary tubings
of rooted trees and Magnus tubings. This thesis discusses just a few interesting ways that
we can use tubed rooted trees in combinatorics. As discussed in Chapter 1, rooted trees
have applications in mathematics and computer science. Rooted trees are particularly
interesting in their use in enumeration, and tubings of rooted trees add further interesting
application in enumeration.

Binary tubings of rooted trees are one type of tubing we have studied, resulting in a nice
bijection to connected chord diagrams. Chord diagrams provide a framework for solving
some series expansions of Dyson-Schwinger equations, and this bijection introduces a new
series expansion of Dyson-Schwinger equations. Both rooted trees and chord diagrams can
be built by recursively adding a sub-tree, or sub-diagram into another at any of its insertion
places. We have seen in Chapter 2, that rooted trees and connected chord diagrams have
the same number of insertion places for a fixed number of vertices and chords. This
leads nicely into our bijection between tubed rooted trees and chord diagrams, where we
recursively build new trees and chord diagrams by inserting smaller ones into each other
using our defined map. This result is central to the topic in Chapter 4, where we defined
a map between connected chord diagrams corresponding to rooted trees.

Re-rooting is a process on a rooted tree where we pick any other root to be the root of
the tree, and with tubed rooted trees, we just keep the tubes the same before and after re-
rooting. This is a well-known operation on a tree in combinatorics and computer science,
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however we have examined through the perspective of chord diagrams using the bijection
from Chapter 3. We have defined an algorithm which takes a chord diagram to another
chord diagram which correspond to a tree and the tree after re-rooting. This helps us
better understand underlying properties about the chord diagrams that are not necessarily
intuitive from the outset.

Finally, we studied Magnus tubings of forests and how they compute the coefficients of
the Magnus expansion, specifically vertical nested tubings and horizontal nested tubings.
The Magnus expansion is a powerful tool that solves linear differential equations with time-
dependent coefficients. Mencattini and Quesney [27] introduced a new type of tubing that
uses two partial orderings on forests. We studied their work and expanded on it by treating
these forests as plane posets. We studied how we can leverage this duality of forests in
a transformation, which we called φ. We discovered that only a special class of forests,
called leftward forests map to forests using this transformation φ. This lead us to some
results about the duality between vertical nested tubings and horizontal nested tubings.

6.2 Future Work

When re-rooting tubed rooted trees and their chord diagrams, we need a lot of information
about the tree before we start. We need to know what the colouring of the whole tree is
after analyzing the tree itself, rather than the chord diagram. We also need to know what
the buds are of the tubes for this process. It would be very useful if it was not necessary
to look at the tree at all; that is, given a chord diagram that corresponds to some tubed
rooted tree, is there an algorithm to colour all the chords without looking at the tree?
Additionally, a quick way to find all the buds of the tubes directly from the chord diagram
would be very useful.

In this project, we only looked at one notion of re-rooting trees, which is when we
take the next vertex in pre-order to be the next root. However, in the general sense, re-
rooting means any root can be taken to be the new root. It’s not immediately obvious
that it’s easy to re-root a chord diagram when any of the roots is arbitrarily chosen rather
than the leftmost child. Obviously, we can do so with this method, but we have to do it
iteratively through every root until we reach the root we want. This does not give a lot
of mathematical insight to this re-rooting. Thus, something to explore would be to see if
there is an easier way to do that, other than iteratively. In our notion of re-rooting, we
chose the leftmost child. Finding an analogous algorithm where we choose the rightmost
child instead appears to be relatively easy.
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In a more general sense, it would be interesting to explore other ways that manipulating
a tree would change the chord diagram, like what we did in this research with re-rooting.
For example, swapping tubings or finding the chord diagram of the mirror image of a plane
rooted tree.

Relating to the Magnus tubings, we would like to find a better connection between
vertical nested tubings and horizontal nested tubings. The hope when we started the
plane poset portion of Chapter 5 was to find that there is some map between the two
tubings using this notion of plane posets. Clearly, that did not work. As we saw in that
chapter, we need a forest to be a leftward forest for it to also be a forest in the plane poset
transformation. However, one open question we have is how we can interpret VNTs and
HNTs of a poset, rather than of a forest. When we have a plane forest F that is not a
leftward forest, then in the transformation it becomes a poset that is not a rooted forest.
So for some tubing of F , can we tweak the definitions of the Magnus tubings so that we
can have Magnus tubings on the poset φ(F )?

Finally, we are interested in some way to connect binary tubings and Magnus tubings,
but this may be very difficult. It would be nice to have something to connect them because
both are ways of indexing series expansions used in physics and in some instances have
some overlap.
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